Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Κύριοι συγγραφείς: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
SpringerOpen
2019-05-01
|
Σειρά: | EURASIP Journal on Wireless Communications and Networking |
Θέματα: | |
Διαθέσιμο Online: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
Παρόμοια τεκμήρια
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
ανά: Md Arman Hossen, κ.ά.
Έκδοση: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
ανά: Chang, Yu-Han, κ.ά.
Έκδοση: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
ανά: Chang, Yu-Han, κ.ά.
Έκδοση: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
ανά: Lincoln Herbert Teixeira, κ.ά.
Έκδοση: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
ανά: Samad Nejatian, 1981-, author 580992, κ.ά.
Έκδοση: (2014)