Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Main Authors: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
SpringerOpen
2019-05-01
|
סדרה: | EURASIP Journal on Wireless Communications and Networking |
נושאים: | |
גישה מקוונת: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
פריטים דומים
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
מאת: Md Arman Hossen, et al.
יצא לאור: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
מאת: Chang, Yu-Han, et al.
יצא לאור: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
מאת: Chang, Yu-Han, et al.
יצא לאור: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
מאת: Lincoln Herbert Teixeira, et al.
יצא לאור: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
מאת: Samad Nejatian, 1981-, author 580992, et al.
יצא לאור: (2014)