Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
主要な著者: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
SpringerOpen
2019-05-01
|
シリーズ: | EURASIP Journal on Wireless Communications and Networking |
主題: | |
オンライン・アクセス: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
類似資料
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
著者:: Md Arman Hossen, 等
出版事項: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
著者:: Chang, Yu-Han, 等
出版事項: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
著者:: Chang, Yu-Han, 等
出版事項: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
著者:: Lincoln Herbert Teixeira, 等
出版事項: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
著者:: Samad Nejatian, 1981-, author 580992, 等
出版事項: (2014)