Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Главные авторы: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
SpringerOpen
2019-05-01
|
Серии: | EURASIP Journal on Wireless Communications and Networking |
Предметы: | |
Online-ссылка: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
Схожие документы
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
по: Md Arman Hossen, и др.
Опубликовано: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
по: Chang, Yu-Han, и др.
Опубликовано: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
по: Chang, Yu-Han, и др.
Опубликовано: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
по: Lincoln Herbert Teixeira, и др.
Опубликовано: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
по: Samad Nejatian, 1981-, author 580992, и др.
Опубликовано: (2014)