Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Автори: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
SpringerOpen
2019-05-01
|
Серія: | EURASIP Journal on Wireless Communications and Networking |
Предмети: | |
Онлайн доступ: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
Схожі ресурси
Схожі ресурси
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
за авторством: Md Arman Hossen, та інші
Опубліковано: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
за авторством: Chang, Yu-Han, та інші
Опубліковано: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
за авторством: Chang, Yu-Han, та інші
Опубліковано: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
за авторством: Lincoln Herbert Teixeira, та інші
Опубліковано: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
за авторством: Samad Nejatian, 1981-, author 580992, та інші
Опубліковано: (2014)