Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks
Abstract In cognitive radio (CR) ad-hoc network, the characteristics of the frequency resources that vary with the time and geographical location need to be considered in order to efficiently use them. Environmental statistics, such as an available transmission opportunity and data rate for each cha...
Những tác giả chính: | Sung-Jeen Jang, Chul-Hee Han, Kwang-Eog Lee, Sang-Jo Yoo |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
SpringerOpen
2019-05-01
|
Loạt: | EURASIP Journal on Wireless Communications and Networking |
Những chủ đề: | |
Truy cập trực tuyến: | http://link.springer.com/article/10.1186/s13638-019-1433-1 |
Những quyển sách tương tự
-
Q-Learning Based Multi-Objective Clustering Algorithm for Cognitive Radio Ad Hoc Networks
Bằng: Md Arman Hossen, et al.
Được phát hành: (2019-01-01) -
Mobilized ad-hoc networks: A reinforcement learning approach
Bằng: Chang, Yu-Han, et al.
Được phát hành: (2005) -
Mobilized ad-hoc networks: A reinforcement learning approach
Bằng: Chang, Yu-Han, et al.
Được phát hành: (2004) -
Reinforcement Learning Environment for Advanced Vehicular Ad Hoc Networks Communication Systems
Bằng: Lincoln Herbert Teixeira, et al.
Được phát hành: (2022-06-01) -
Unified spectrum handoff in cognitive radio mobile ad hoc networks /
Bằng: Samad Nejatian, 1981-, author 580992, et al.
Được phát hành: (2014)