Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts

Hippocampal pyramidal cells encode an animal’s location by single action potentials and complex spike bursts. The authors show that Kcnq3-containing M-channels synergistically with GABAergic inputs coordinate complex spike bursts during theta oscillations, which is a key mechanism for spatial coding...

Full description

Bibliographic Details
Main Authors: Xiaojie Gao, Franziska Bender, Heun Soh, Changwan Chen, Mahsa Altafi, Sebastian Schütze, Matthias Heidenreich, Maria Gorbati, Mihaela-Anca Corbu, Marta Carus-Cadavieco, Tatiana Korotkova, Anastasios V. Tzingounis, Thomas J. Jentsch, Alexey Ponomarenko
Format: Article
Language:English
Published: Nature Portfolio 2021-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-24805-2
Description
Summary:Hippocampal pyramidal cells encode an animal’s location by single action potentials and complex spike bursts. The authors show that Kcnq3-containing M-channels synergistically with GABAergic inputs coordinate complex spike bursts during theta oscillations, which is a key mechanism for spatial coding by single spikes.
ISSN:2041-1723