Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin
Abstract Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of t...
मुख्य लेखकों: | , , , , , |
---|---|
स्वरूप: | लेख |
भाषा: | English |
प्रकाशित: |
Wiley
2022-04-01
|
श्रृंखला: | Physiological Reports |
विषय: | |
ऑनलाइन पहुंच: | https://doi.org/10.14814/phy2.15253 |
_version_ | 1828349839200485376 |
---|---|
author | Erica M. Kozorosky Cristina H. Lee Jessica G. Lee Valeria Nunez Martinez Leandra E. Padayachee Harald M. Stauss |
author_facet | Erica M. Kozorosky Cristina H. Lee Jessica G. Lee Valeria Nunez Martinez Leandra E. Padayachee Harald M. Stauss |
author_sort | Erica M. Kozorosky |
collection | DOAJ |
description | Abstract Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single‐blinded randomized cross‐over protocols, blood glucose levels, plasma concentrations of insulin, C‐peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor‐heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0–2.5 mA, 30 min) or sham‐taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high‐calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham‐taVNS. No significant effects of taVNS on heart rate variability and baroreceptor‐heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: −115.5 ± 28.3 pg/ml vs. sham‐taVNS: −51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow‐up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss. |
first_indexed | 2024-04-14T01:16:28Z |
format | Article |
id | doaj.art-f34b79a2e2d742efa15b2750e899c51c |
institution | Directory Open Access Journal |
issn | 2051-817X |
language | English |
last_indexed | 2024-04-14T01:16:28Z |
publishDate | 2022-04-01 |
publisher | Wiley |
record_format | Article |
series | Physiological Reports |
spelling | doaj.art-f34b79a2e2d742efa15b2750e899c51c2022-12-22T02:20:51ZengWileyPhysiological Reports2051-817X2022-04-01108n/an/a10.14814/phy2.15253Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelinErica M. Kozorosky0Cristina H. Lee1Jessica G. Lee2Valeria Nunez Martinez3Leandra E. Padayachee4Harald M. Stauss5Burrell College of Osteopathic Medicine Las Cruces New Mexico USABurrell College of Osteopathic Medicine Las Cruces New Mexico USABurrell College of Osteopathic Medicine Las Cruces New Mexico USABurrell College of Osteopathic Medicine Las Cruces New Mexico USABurrell College of Osteopathic Medicine Las Cruces New Mexico USABurrell College of Osteopathic Medicine Las Cruces New Mexico USAAbstract Vagus nerve stimulation (VNS) facilitates weight loss in animals and patients treated with VNS for depression or epilepsy. Likewise, chronic transcutaneous auricular VNS (taVNS) reduces weight gain and improves glucose tolerance in Zucker diabetic fatty rats. If these metabolic effects of taVNS observed in rats translate to humans is unknown. Therefore, the hypothesis of this study was that acute application of taVNS affects glucotropic and orexigenic hormones which could potentially facilitate weight loss and improve glucose tolerance if taVNS were applied chronically. In two single‐blinded randomized cross‐over protocols, blood glucose levels, plasma concentrations of insulin, C‐peptide, glucagon, leptin, and ghrelin, together with heart rate variability and baroreceptor‐heart rate reflex sensitivity were determined before and after taVNS (left ear, 10 Hz, 300 µs, 2.0–2.5 mA, 30 min) or sham‐taVNS (electrode attached to ear with the stimulator turned off). In a first protocol, subjects (n = 16) were fasted throughout the protocol and in a second protocol, subjects (n = 10) received a high‐calorie beverage (220 kCal) after the first blood sample, just before initiation of taVNS or sham‐taVNS. No significant effects of taVNS on heart rate variability and baroreceptor‐heart rate reflex sensitivity and only minor effects on glucotropic hormones were observed. However, in the second protocol taVNS significantly lowered postprandial plasma ghrelin levels (taVNS: −115.5 ± 28.3 pg/ml vs. sham‐taVNS: −51.2 ± 30.6 pg/ml, p < 0.05). This finding provides a rationale for follow‐up studies testing the hypothesis that chronic application of taVNS may reduce food intake through inhibition of ghrelin and, therefore, may indirectly improve glucose tolerance through weight loss.https://doi.org/10.14814/phy2.15253baroreceptor‐heart rate reflex sensitivityC‐peptideglucagonheart rate variabilityinsulinRMSSD |
spellingShingle | Erica M. Kozorosky Cristina H. Lee Jessica G. Lee Valeria Nunez Martinez Leandra E. Padayachee Harald M. Stauss Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin Physiological Reports baroreceptor‐heart rate reflex sensitivity C‐peptide glucagon heart rate variability insulin RMSSD |
title | Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
title_full | Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
title_fullStr | Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
title_full_unstemmed | Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
title_short | Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
title_sort | transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin |
topic | baroreceptor‐heart rate reflex sensitivity C‐peptide glucagon heart rate variability insulin RMSSD |
url | https://doi.org/10.14814/phy2.15253 |
work_keys_str_mv | AT ericamkozorosky transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin AT cristinahlee transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin AT jessicaglee transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin AT valerianunezmartinez transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin AT leandraepadayachee transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin AT haraldmstauss transcutaneousauricularvagusnervestimulationaugmentspostprandialinhibitionofghrelin |