Beyond Weisfeiler–Lehman with Local Ego-Network Encodings

Identifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Wei...

Full description

Bibliographic Details
Main Authors: Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, Vicenç Gómez
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Machine Learning and Knowledge Extraction
Subjects:
Online Access:https://www.mdpi.com/2504-4990/5/4/63
Description
Summary:Identifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Weisfeiler–Lehman (1-WL) test. We introduce <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula>, a preprocessing step to produce features that augment node representations by encoding ego networks into sparse vectors that enrich message passing (MP) graph neural networks (GNNs) beyond 1-WL expressivity. We formally describe the relation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> and 1-WL, and characterize its expressive power and limitations. Experiments show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> matches the empirical expressivity of state-of-the-art methods on isomorphism detection while improving performance on nine GNN architectures and six graph machine learning tasks.
ISSN:2504-4990