Beyond Weisfeiler–Lehman with Local Ego-Network Encodings

Identifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Wei...

Full description

Bibliographic Details
Main Authors: Nurudin Alvarez-Gonzalez, Andreas Kaltenbrunner, Vicenç Gómez
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Machine Learning and Knowledge Extraction
Subjects:
Online Access:https://www.mdpi.com/2504-4990/5/4/63
_version_ 1797380300418842624
author Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicenç Gómez
author_facet Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicenç Gómez
author_sort Nurudin Alvarez-Gonzalez
collection DOAJ
description Identifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Weisfeiler–Lehman (1-WL) test. We introduce <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula>, a preprocessing step to produce features that augment node representations by encoding ego networks into sparse vectors that enrich message passing (MP) graph neural networks (GNNs) beyond 1-WL expressivity. We formally describe the relation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> and 1-WL, and characterize its expressive power and limitations. Experiments show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> matches the empirical expressivity of state-of-the-art methods on isomorphism detection while improving performance on nine GNN architectures and six graph machine learning tasks.
first_indexed 2024-03-08T20:35:24Z
format Article
id doaj.art-f356f514957141fe92aab1c80616ab23
institution Directory Open Access Journal
issn 2504-4990
language English
last_indexed 2024-03-08T20:35:24Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Machine Learning and Knowledge Extraction
spelling doaj.art-f356f514957141fe92aab1c80616ab232023-12-22T14:22:07ZengMDPI AGMachine Learning and Knowledge Extraction2504-49902023-09-01541234126510.3390/make5040063Beyond Weisfeiler–Lehman with Local Ego-Network EncodingsNurudin Alvarez-Gonzalez0Andreas Kaltenbrunner1Vicenç Gómez2Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018 Barcelona, SpainInternet Interdisciplinary Institute, Universitat Oberta de Catalunya, 08018 Barcelona, SpainDepartment of Information and Communications Technologies, Universitat Pompeu Fabra, 08018 Barcelona, SpainIdentifying similar network structures is key to capturing graph isomorphisms and learning representations that exploit structural information encoded in graph data. This work shows that ego networks can produce a structural encoding scheme for arbitrary graphs with greater expressivity than the Weisfeiler–Lehman (1-WL) test. We introduce <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula>, a preprocessing step to produce features that augment node representations by encoding ego networks into sparse vectors that enrich message passing (MP) graph neural networks (GNNs) beyond 1-WL expressivity. We formally describe the relation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> and 1-WL, and characterize its expressive power and limitations. Experiments show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal" mathsize="normal">I</mi><mi mathvariant="normal" mathsize="small">G</mi><mi mathvariant="normal" mathsize="small">E</mi><mi mathvariant="normal" mathsize="small">L</mi></mrow></semantics></math></inline-formula> matches the empirical expressivity of state-of-the-art methods on isomorphism detection while improving performance on nine GNN architectures and six graph machine learning tasks.https://www.mdpi.com/2504-4990/5/4/63graph neural networksgraph representation learningWeisfeiler–Lehmangraph isomorphismGNN expressivityego networks
spellingShingle Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicenç Gómez
Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
Machine Learning and Knowledge Extraction
graph neural networks
graph representation learning
Weisfeiler–Lehman
graph isomorphism
GNN expressivity
ego networks
title Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
title_full Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
title_fullStr Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
title_full_unstemmed Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
title_short Beyond Weisfeiler–Lehman with Local Ego-Network Encodings
title_sort beyond weisfeiler lehman with local ego network encodings
topic graph neural networks
graph representation learning
Weisfeiler–Lehman
graph isomorphism
GNN expressivity
ego networks
url https://www.mdpi.com/2504-4990/5/4/63
work_keys_str_mv AT nurudinalvarezgonzalez beyondweisfeilerlehmanwithlocalegonetworkencodings
AT andreaskaltenbrunner beyondweisfeilerlehmanwithlocalegonetworkencodings
AT vicencgomez beyondweisfeilerlehmanwithlocalegonetworkencodings