Generalized Resonance Sensor Based on Fiber Bragg Grating

In response to the difficulty of weak detection of early bearing damage, resonance demodulation technology and the principle of fiber Bragg grating sensing strain were combined to design a fiber Bragg grating generalized resonance sensor, which can extract the weak pulse signal of weak detection of...

Full description

Bibliographic Details
Main Authors: Xinxin Chen, Enbo Wang, Yali Jiang, Hui Zhan, Hongwei Li, Guohui Lyu, Shuli Sun
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/5/156
Description
Summary:In response to the difficulty of weak detection of early bearing damage, resonance demodulation technology and the principle of fiber Bragg grating sensing strain were combined to design a fiber Bragg grating generalized resonance sensor, which can extract the weak pulse signal of weak detection of early bearing’s early damage from rolling bearing. First, a principle of resonance dynamics of second-order mechanical systems based on fiber Bragg grating and generalized resonance principles is proposed. Second, the basic structure of the sensor is designed. Then, ANSYS finite element simulation is used to analyze the natural frequency of the sensor. Finally, the natural frequency value of the sensor was obtained through experiments. The experimental results of proof-of-principle show that the experimental results are consistent with the theoretical predictions. The theoretical model is accurate, which verifies the feasibility of the sensor.
ISSN:2304-6732