A novel degradable PCL/PLLA strapping band for internal fixation of fracture
Abstract Early fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes sec...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2023-11-01
|
Series: | Journal of Materials Science: Materials in Medicine |
Online Access: | https://doi.org/10.1007/s10856-023-06759-7 |
_version_ | 1827635811624943616 |
---|---|
author | Baoyan Jin Chongjing Zhang Zeyuan Zhong Zichen Liu Zhenhua Zhang Dejian Li Min Zhu Baoqing Yu |
author_facet | Baoyan Jin Chongjing Zhang Zeyuan Zhong Zichen Liu Zhenhua Zhang Dejian Li Min Zhu Baoqing Yu |
author_sort | Baoyan Jin |
collection | DOAJ |
description | Abstract Early fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes secondary damage to them. The development of new degradable internal fracture implants has attracted more and more attention from orthopedic surgeons and researchers. Based on these problems, we improved the various properties of medical grade polycaprolactone (PCL) by adding poly(L-lactide) (PLLA). We produced PCL/PLLA strapping bands with different mass ratios by injection molding. We compared the mechanical properties, degradation properties, cell biocompatibility, bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, osteogenic differentiation and fracture fixation effect of these strapping bands. The results showed that the tensile strength and yield force of the strapping bands increased with the increase of the content of PLLA. The addition of PLLA could significantly improve the mechanical strength in the early stage and accelerate the degradation rate of the strapping band. PCL/PLLA (80/20) strapping band had no significant cytotoxicity toward rBMSCs and could promote osteogenic differentiation of rBMSCs. The strapping band could ensure femoral fracture healing of beagles in 3 months and didn’t cause damage to the surrounding tissues and main organs. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. Graphical Abstract We produced novel degradable PCL/PLLA strapping bands with different mass ratios by injection molding. We tested the biological safety of the prepared internal fixation strapping bands for fracture, such as cell experiment in vitro and animal experiment, and studied the degradation behavior in vitro. The strapping bands could ensure femoral fracture healing of beagles. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. A Immunofluorescence staining of rBMSCs (live cells: green; dead cells: red). B Young’s modulus change curve during strapping bands degradation. C The implantation process of strapping bands. D Micro-CT images of the beagle’s fracture recovery after the operation. |
first_indexed | 2024-03-09T15:32:40Z |
format | Article |
id | doaj.art-f363fb6fdd4f4e9a900a4ed0da2c7b4b |
institution | Directory Open Access Journal |
issn | 1573-4838 |
language | English |
last_indexed | 2024-03-09T15:32:40Z |
publishDate | 2023-11-01 |
publisher | Springer |
record_format | Article |
series | Journal of Materials Science: Materials in Medicine |
spelling | doaj.art-f363fb6fdd4f4e9a900a4ed0da2c7b4b2023-11-26T12:12:10ZengSpringerJournal of Materials Science: Materials in Medicine1573-48382023-11-01341111310.1007/s10856-023-06759-7A novel degradable PCL/PLLA strapping band for internal fixation of fractureBaoyan Jin0Chongjing Zhang1Zeyuan Zhong2Zichen Liu3Zhenhua Zhang4Dejian Li5Min Zhu6Baoqing Yu7School of Materials and Chemistry, University of Shanghai for Science and TechnologyDepartment of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical CenterDepartment of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical CenterSchool of Materials and Chemistry, University of Shanghai for Science and TechnologySchool of Materials and Chemistry, University of Shanghai for Science and TechnologyDepartment of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical CenterSchool of Materials and Chemistry, University of Shanghai for Science and TechnologyDepartment of Orthopedics, Shanghai Pudong New Area People’s HospitalAbstract Early fracture fixation is the critical factor in fracture healing. Common internal fracture implants are made of metallic materials, which often affects the imaging quality of CT and MRI. Most patients will choose secondary surgery to remove the internal fixation implants, which causes secondary damage to them. The development of new degradable internal fracture implants has attracted more and more attention from orthopedic surgeons and researchers. Based on these problems, we improved the various properties of medical grade polycaprolactone (PCL) by adding poly(L-lactide) (PLLA). We produced PCL/PLLA strapping bands with different mass ratios by injection molding. We compared the mechanical properties, degradation properties, cell biocompatibility, bone marrow mesenchymal stem cells (BMSCs) adhesion, proliferation, osteogenic differentiation and fracture fixation effect of these strapping bands. The results showed that the tensile strength and yield force of the strapping bands increased with the increase of the content of PLLA. The addition of PLLA could significantly improve the mechanical strength in the early stage and accelerate the degradation rate of the strapping band. PCL/PLLA (80/20) strapping band had no significant cytotoxicity toward rBMSCs and could promote osteogenic differentiation of rBMSCs. The strapping band could ensure femoral fracture healing of beagles in 3 months and didn’t cause damage to the surrounding tissues and main organs. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. Graphical Abstract We produced novel degradable PCL/PLLA strapping bands with different mass ratios by injection molding. We tested the biological safety of the prepared internal fixation strapping bands for fracture, such as cell experiment in vitro and animal experiment, and studied the degradation behavior in vitro. The strapping bands could ensure femoral fracture healing of beagles. This study will provide some new insights into the biodegradable products of PCL/PLLA blends for internal fixation of fracture. A Immunofluorescence staining of rBMSCs (live cells: green; dead cells: red). B Young’s modulus change curve during strapping bands degradation. C The implantation process of strapping bands. D Micro-CT images of the beagle’s fracture recovery after the operation.https://doi.org/10.1007/s10856-023-06759-7 |
spellingShingle | Baoyan Jin Chongjing Zhang Zeyuan Zhong Zichen Liu Zhenhua Zhang Dejian Li Min Zhu Baoqing Yu A novel degradable PCL/PLLA strapping band for internal fixation of fracture Journal of Materials Science: Materials in Medicine |
title | A novel degradable PCL/PLLA strapping band for internal fixation of fracture |
title_full | A novel degradable PCL/PLLA strapping band for internal fixation of fracture |
title_fullStr | A novel degradable PCL/PLLA strapping band for internal fixation of fracture |
title_full_unstemmed | A novel degradable PCL/PLLA strapping band for internal fixation of fracture |
title_short | A novel degradable PCL/PLLA strapping band for internal fixation of fracture |
title_sort | novel degradable pcl plla strapping band for internal fixation of fracture |
url | https://doi.org/10.1007/s10856-023-06759-7 |
work_keys_str_mv | AT baoyanjin anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT chongjingzhang anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT zeyuanzhong anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT zichenliu anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT zhenhuazhang anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT dejianli anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT minzhu anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT baoqingyu anoveldegradablepclpllastrappingbandforinternalfixationoffracture AT baoyanjin noveldegradablepclpllastrappingbandforinternalfixationoffracture AT chongjingzhang noveldegradablepclpllastrappingbandforinternalfixationoffracture AT zeyuanzhong noveldegradablepclpllastrappingbandforinternalfixationoffracture AT zichenliu noveldegradablepclpllastrappingbandforinternalfixationoffracture AT zhenhuazhang noveldegradablepclpllastrappingbandforinternalfixationoffracture AT dejianli noveldegradablepclpllastrappingbandforinternalfixationoffracture AT minzhu noveldegradablepclpllastrappingbandforinternalfixationoffracture AT baoqingyu noveldegradablepclpllastrappingbandforinternalfixationoffracture |