A lattice Boltzmann study of dynamic immiscible displacement mechanisms in pore doublets
An advanced chromodynamics, Rothmann-Keller (RK) type lattice Boltzmann model (LBM) is used in this study. The new model benefits from high stability and capability of independently setting the interfacial tension of the fluids as an input parameter. In addition, the model is coupled with a wall-den...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://www.matec-conferences.org/articles/matecconf/pdf/2021/06/matecconf_PanAm-Unsat2021_02011.pdf |
Summary: | An advanced chromodynamics, Rothmann-Keller (RK) type lattice Boltzmann model (LBM) is used in this study. The new model benefits from high stability and capability of independently setting the interfacial tension of the fluids as an input parameter. In addition, the model is coupled with a wall-density approach to simulate the hydrophilic or hydrophobic properties of wall surfaces. Finally, injection of a wetting (non-wetting) fluid in a pore doublet geometry which is initially filled with non-wetting (wetting) fluid is simulated. The results of simulation reveal the capability of RK-LBM to simulate relative permeabilities of fluids in porous media for future studies of two-immiscible phase flow in various geoenvironmental problems. |
---|---|
ISSN: | 2261-236X |