Summary: | The long-term performance of traditional solar panels can be affected by various climate conditions, resulting in issues such as decreased power output, interconnector failure, and cell fracture. Unfortunately, traditional modules are not repairable, and often the entire unit must be replaced, even if the failure is due only to a single component. In this work, conventional encapsulation methods are investigated, and a novel solar panel design approach is introduced. This innovative approach enables easy and direct access to individual components, thereby enabling the convenient carrying out of repairs, upgrades, and modifications. The proposed module configuration is composed of a double-layer structure. The initial layer functions as a protective glass cover while the second layer is made up of solar cells that are attached to a printed circuit board (PCB) that can endure high temperatures. These two layers are combined within an aluminum frame that can be opened for accessibility. To test the effectiveness of this new encapsulation technique, an experimental study was conducted. It was revealed through this experimental study that the dark and illuminated current–voltage characteristics are not affected when applying the new encapsulation technique. Furthermore, a theoretical thermal analysis was conducted in order to compare the performance of the proposed module with that of a conventional module. According to the thermal analysis, the proposed encapsulation method should result in slightly higher thermal stress on the solar cells compared with conventional encapsulation. Nonetheless, the proposed methodology offers advantages in terms of reliability and reparability. Thus, implementing the presented design can help conserve natural resources and reduce production costs.
|