Quantum Otto refrigerators in finite-time cycle period

Finite-time cycle period for a quantum Otto machine implies that either an adiabatic stroke or an isochoric process proceeds in finite time duration. The quantum Otto refrigerators under consideration consist of two adiabatic strokes, where the system (isolated from the heat reservoir) undergoes fin...

Full description

Bibliographic Details
Main Authors: Guangqian Jiao, Yang Xiao, Jizhou He, Yongli Ma, Jianhui Wang
Format: Article
Language:English
Published: IOP Publishing 2021-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ac08e4
Description
Summary:Finite-time cycle period for a quantum Otto machine implies that either an adiabatic stroke or an isochoric process proceeds in finite time duration. The quantum Otto refrigerators under consideration consist of two adiabatic strokes, where the system (isolated from the heat reservoir) undergoes finite-time unitary transformation, and two isochoric steps, where the system may not reach thermal equilibrium even at the respective ends of the two stages due to finite-time interaction intervals. Using two-time projective measurement method, we find the probability distribution functions of both coefficient of performance and cooling load, which are dependent on the time duration along each process. With these distributions we find the analytical expressions for the performance parameters as well as their fluctuations. We then numerically determine the performance and fluctuations for the refrigerator operating with a two-level system employed in a recent experimental implementation. Our results clarify the role of finite-time durations of four processes on the performance and fluctuations of the quantum Otto refrigerators.
ISSN:1367-2630