Investigation of Early Warning Indexes in a Three-Dimensional Chaotic System with Zero Eigenvalues

A rare three-dimensional chaotic system with all eigenvalues equal to zero is proposed, and its dynamical properties are investigated. The chaotic system has one equilibrium point at the origin. Numerical analysis shows that the equilibrium point is unstable. Bifurcation analysis of the system shows...

Full description

Bibliographic Details
Main Authors: Lianyu Chen, Fahimeh Nazarimehr, Sajad Jafari, Esteban Tlelo-Cuautle, Iqtadar Hussain
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/3/341
Description
Summary:A rare three-dimensional chaotic system with all eigenvalues equal to zero is proposed, and its dynamical properties are investigated. The chaotic system has one equilibrium point at the origin. Numerical analysis shows that the equilibrium point is unstable. Bifurcation analysis of the system shows various dynamics in a period-doubling route to chaos. We highlight that from the evaluation of the entropy, bifurcation points can be predicted by identifying early warning signals. In this manner, bifurcation points of the system are analyzed using Shannon and Kolmogorov-Sinai entropy. The results are compared with Lyapunov exponents.
ISSN:1099-4300