The Protective Role of Apelin in the Early Stages of Diabetic Retinopathy

Diabetic retinopathy (DR) is one of the most common and serious microvascular complications of diabetes. Although current treatments can control the progression of DR to a certain extent, there is no effective treatment for early DR. Apart from vascular endothelial growth factor, it has been noted t...

Full description

Bibliographic Details
Main Authors: Jing Feng, Weiqiang Yang, Fuxiao Luan, Fang Ma, Yingjie Wang, Yiquan Zhang, Xuhui Liu, Li Chen, Xiaofeng Hu, Yong Tao
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/23/14680
Description
Summary:Diabetic retinopathy (DR) is one of the most common and serious microvascular complications of diabetes. Although current treatments can control the progression of DR to a certain extent, there is no effective treatment for early DR. Apart from vascular endothelial growth factor, it has been noted that the apelin/APJ system contributes to the pathogenesis of DR. We used a high-fat diet/streptozotocin-induced type 2 diabetic mouse model. The mice were divided into a lentivirus control group (LV-EGFP), an apelin-overexpression group (LV-Apelin+), and an apelin-knockdown group (LV-Apelin−), all of which were administrated intravitreal injections. LV-Apelin+ ameliorated the loss of pericytes in DR mice, whereas LV-Apelin− aggravated the loss of pericytes. Similarly, LV-Apelin+ reduced the leakage of retinal vessels, whereas LV-Apelin− exacerbated it. The genes and signaling pathway related to cell adhesion molecules were downregulated, whereas the cell–cell tight junctions and anti-apoptotic genes were upregulated in response to apelin overexpression. However, the alterations of these same genes and signaling pathways were reversed in the case of apelin knockdown. Additionally, LV-Apelin+ increased ZO-1 and occludin levels, whereas LV-Apelin− decreased them. Our results suggest that apelin can reduce vascular leakage by protecting pericytes, which offers a promising new direction for the early treatment of DR.
ISSN:1661-6596
1422-0067