Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method

Harmonic oscillators with multiple abrupt jumps in their frequencies have been investigated by several authors during the last decades. We investigate the dynamics of a quantum harmonic oscillator with initial frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&qu...

詳細記述

書誌詳細
主要な著者: Stanley S. Coelho, Lucas Queiroz, Danilo T. Alves
フォーマット: 論文
言語:English
出版事項: MDPI AG 2022-12-01
シリーズ:Entropy
主題:
オンライン・アクセス:https://www.mdpi.com/1099-4300/24/12/1851
_version_ 1827639820065701888
author Stanley S. Coelho
Lucas Queiroz
Danilo T. Alves
author_facet Stanley S. Coelho
Lucas Queiroz
Danilo T. Alves
author_sort Stanley S. Coelho
collection DOAJ
description Harmonic oscillators with multiple abrupt jumps in their frequencies have been investigated by several authors during the last decades. We investigate the dynamics of a quantum harmonic oscillator with initial frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mn>0</mn></msub></semantics></math></inline-formula>, which undergoes a sudden jump to a frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mn>1</mn></msub></semantics></math></inline-formula> and, after a certain time interval, suddenly returns to its initial frequency. Using the Lewis–Riesenfeld method of dynamical invariants, we present expressions for the mean energy value, the mean number of excitations, and the transition probabilities, considering the initial state different from the fundamental. We show that the mean energy of the oscillator, after the jumps, is equal or greater than the one before the jumps, even when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>1</mn></msub><mo><</mo><msub><mi>ω</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. We also show that, for particular values of the time interval between the jumps, the oscillator returns to the same initial state.
first_indexed 2024-03-09T16:48:25Z
format Article
id doaj.art-f3bc9f5a430d45b6b0772a88722d9911
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T16:48:25Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-f3bc9f5a430d45b6b0772a88722d99112023-11-24T14:44:11ZengMDPI AGEntropy1099-43002022-12-012412185110.3390/e24121851Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant MethodStanley S. Coelho0Lucas Queiroz1Danilo T. Alves2Faculdade de Física, Universidade Federal do Pará, Belém 66075-110, PA, BrazilFaculdade de Física, Universidade Federal do Pará, Belém 66075-110, PA, BrazilFaculdade de Física, Universidade Federal do Pará, Belém 66075-110, PA, BrazilHarmonic oscillators with multiple abrupt jumps in their frequencies have been investigated by several authors during the last decades. We investigate the dynamics of a quantum harmonic oscillator with initial frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mn>0</mn></msub></semantics></math></inline-formula>, which undergoes a sudden jump to a frequency <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ω</mi><mn>1</mn></msub></semantics></math></inline-formula> and, after a certain time interval, suddenly returns to its initial frequency. Using the Lewis–Riesenfeld method of dynamical invariants, we present expressions for the mean energy value, the mean number of excitations, and the transition probabilities, considering the initial state different from the fundamental. We show that the mean energy of the oscillator, after the jumps, is equal or greater than the one before the jumps, even when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mn>1</mn></msub><mo><</mo><msub><mi>ω</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. We also show that, for particular values of the time interval between the jumps, the oscillator returns to the same initial state.https://www.mdpi.com/1099-4300/24/12/1851Lewis–Riesenfeld methodquantum harmonic oscillatorabrupt jumps
spellingShingle Stanley S. Coelho
Lucas Queiroz
Danilo T. Alves
Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
Entropy
Lewis–Riesenfeld method
quantum harmonic oscillator
abrupt jumps
title Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
title_full Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
title_fullStr Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
title_full_unstemmed Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
title_short Exact Solution of a Time-Dependent Quantum Harmonic Oscillator with Two Frequency Jumps via the Lewis–Riesenfeld Dynamical Invariant Method
title_sort exact solution of a time dependent quantum harmonic oscillator with two frequency jumps via the lewis riesenfeld dynamical invariant method
topic Lewis–Riesenfeld method
quantum harmonic oscillator
abrupt jumps
url https://www.mdpi.com/1099-4300/24/12/1851
work_keys_str_mv AT stanleyscoelho exactsolutionofatimedependentquantumharmonicoscillatorwithtwofrequencyjumpsviathelewisriesenfelddynamicalinvariantmethod
AT lucasqueiroz exactsolutionofatimedependentquantumharmonicoscillatorwithtwofrequencyjumpsviathelewisriesenfelddynamicalinvariantmethod
AT danilotalves exactsolutionofatimedependentquantumharmonicoscillatorwithtwofrequencyjumpsviathelewisriesenfelddynamicalinvariantmethod