Characterization of Oxide Trapping in SiC MOSFETs Under Positive Gate Bias

SiC MOSFETs devices with double-trench dominate the market due to their low on-resistance. However, studies on its temperature-dependent properties are not comprehensive. This work uses fast I-V and static I-V techniques to explore the location of electrons trapped in the device under moderate gate...

Full description

Bibliographic Details
Main Authors: Ye Liang, Yuanlei Zhang, Jingqun Zhang, Xiuyuan He, Yinchao Zhao, Miao Cui, Huiqing Wen, Mingxiang Wang, Wen Liu
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9913635/
Description
Summary:SiC MOSFETs devices with double-trench dominate the market due to their low on-resistance. However, studies on its temperature-dependent properties are not comprehensive. This work uses fast I-V and static I-V techniques to explore the location of electrons trapped in the device under moderate gate stress. Threshold voltage instability (<inline-formula> <tex-math notation="LaTeX">${\mathrm {V}}_{\mathrm {TH}}$ </tex-math></inline-formula> hysteresis and <inline-formula> <tex-math notation="LaTeX">$\Delta{\mathrm {V}}_{\mathrm {TH}}$ </tex-math></inline-formula>) and on-resistance degradation (<inline-formula> <tex-math notation="LaTeX">$\Delta{\mathrm {R}}_{\mathrm {ON}}$ </tex-math></inline-formula>) are used to characterize oxide trapping. Although the observation method is different, it can be found that the <inline-formula> <tex-math notation="LaTeX">${\mathrm {V}}_{\mathrm {TH}}$ </tex-math></inline-formula> instability and <inline-formula> <tex-math notation="LaTeX">${\mathrm {R}}_{\mathrm {ON}}$ </tex-math></inline-formula> degradation increase linearly with logarithmic time over a wide time range from <inline-formula> <tex-math notation="LaTeX">$100~\mu{\mathrm {s}}$ </tex-math></inline-formula> to 104 s, suggesting that the direct tunneling mechanism dominates the electrons trapping in the oxide near the SiO2/SiC interface. The interface trap density is <inline-formula> <tex-math notation="LaTeX">$3.8\times 10^{12}$ </tex-math></inline-formula> cm&#x2212;2<inline-formula> <tex-math notation="LaTeX">$\cdot$ </tex-math></inline-formula>eV&#x2212;1. In addition, a negative temperature dependence is shown in the test, and the fitting parameter <inline-formula> <tex-math notation="LaTeX">$\gamma$ </tex-math></inline-formula> from 0.16 to 0.18 indicated that these traps are concentrated in the oxide layer. These traps&#x2019; energy level at 0.68 eV below the conduction band was obtained in the recovery phase through the Arrhenius plot.
ISSN:2168-6734