Design Implications and Opportunities of Considering Fatigue Strength, Manufacturing Variations and Predictive LCC in Welds

Fatigue strength dictates life and cost of welded structures and is often a direct result of initial manufacturing variations and defects. This paper addresses this coupling through proposing and applying the methodology of predictive life-cycle costing (PLCC) to evaluate a welded structure exhibiti...

Full description

Bibliographic Details
Main Authors: Mathilda Karlsson Hagnell, Mansoor Khurshid, Malin Åkermo, Zuheir Barsoum
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/10/1527
Description
Summary:Fatigue strength dictates life and cost of welded structures and is often a direct result of initial manufacturing variations and defects. This paper addresses this coupling through proposing and applying the methodology of predictive life-cycle costing (PLCC) to evaluate a welded structure exhibiting manufacturing-induced variations in penetration depth. It is found that if a full-width crack is a fact, a 50% thicker design can result in life-cycle cost reductions of 60% due to reduced repair costs. The paper demonstrates the importance of incorporating manufacturing variations in an early design stage to ensure an overall minimized life-cycle cost.
ISSN:2075-4701