Single-Cell Transcriptomics Links Loss of Human Pancreatic β-Cell Identity to ER Stress

The maintenance of pancreatic islet architecture is crucial for proper β-cell function. We previously reported that disruption of human islet integrity could result in altered β-cell identity. Here we combine β-cell lineage tracing and single-cell transcriptomics to investigate the mechanisms underl...

Full description

Bibliographic Details
Main Authors: Nathalie Groen, Floris Leenders, Ahmed Mahfouz, Amadeo Munoz-Garcia, Mauro J. Muraro, Natascha de Graaf, Ton. J. Rabelink, Rob Hoeben, Alexander van Oudenaarden, Arnaud Zaldumbide, Marcel J. T. Reinders, Eelco J. P. de Koning, Françoise Carlotti
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/12/3585
Description
Summary:The maintenance of pancreatic islet architecture is crucial for proper β-cell function. We previously reported that disruption of human islet integrity could result in altered β-cell identity. Here we combine β-cell lineage tracing and single-cell transcriptomics to investigate the mechanisms underlying this process in primary human islet cells. Using drug-induced ER stress and cytoskeleton modification models, we demonstrate that altering the islet structure triggers an unfolding protein response that causes the downregulation of β-cell maturity genes. Collectively, our findings illustrate the close relationship between endoplasmic reticulum homeostasis and β-cell phenotype, and strengthen the concept of altered β-cell identity as a mechanism underlying the loss of functional β-cell mass.
ISSN:2073-4409