Hille-Kneser-type criteria for second-order dynamic equations on time scales

<p/> <p>We consider the pair of second-order dynamic equations, (<it>r</it>(<it>t</it>)(<it>x</it><sup>&#916;</sup>)<sup><it>&#947;</it></sup>)<sup>&#916;</sup> + <it>p</it>(<it...

Full description

Bibliographic Details
Main Authors: Saker SH, Erbe L, Peterson A
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2006/051401
Description
Summary:<p/> <p>We consider the pair of second-order dynamic equations, (<it>r</it>(<it>t</it>)(<it>x</it><sup>&#916;</sup>)<sup><it>&#947;</it></sup>)<sup>&#916;</sup> + <it>p</it>(<it>t</it>)<it>x</it><sup><it>&#947;</it></sup>(<it>t</it>) = 0 and (<it>r</it>(<it>t</it>)(<it>x</it><sup>&#916;</sup>)<sup><it>&#947;</it></sup>)<sup>&#916;</sup> + <it>p</it>(<it>t</it>)<it>x</it><sup><it>&#947;&#963;</it></sup>(<it>t</it>) = 0, on a time scale <inline-formula><graphic file="1687-1847-2006-051401-i1.gif"/></inline-formula>, where <it>&#947;</it> &gt; 0 is a quotient of odd positive integers. We establish some necessary and sufficient conditions for nonoscillation of Hille-Kneser type. Our results in the special case when <inline-formula><graphic file="1687-1847-2006-051401-i2.gif"/></inline-formula> involve the well-known Hille-Kneser-type criteria of second-order linear differential equations established by Hille. For the case of the second-order half-linear differential equation, our results extend and improve some earlier results of Li and Yeh and are related to some work of Do&#353;l&#253; and &#344;eh&#225;k and some results of &#344;eh&#225;k for half-linear equations on time scales. Several examples are considered to illustrate the main results.</p>
ISSN:1687-1839
1687-1847