On general partial Gaussian sums

Abstract Let q ≥ 2 $q\geq2$ be a fixed integer, A = A ( q ) ≤ q $A=A(q)\leq q$ , B = B ( q ) ≤ q $B=B(q)\leq q$ , and H = H ( q ) ≤ q $H=H(q)\leq q$ . Define ħ ( A , B , H ) = { a ∈ Z ∣ ( a , q ) = 1 , a b ≡ 1 ( mod q ) , 1 ≤ a ≤ A , 1 ≤ b ≤ B , | a − b | ≤ H } . $$\hbar(A,B,H)= \bigl\{ a\in\mathbb{...

Full description

Bibliographic Details
Main Authors: Ganglian Ren, Dingding He, Tianping Zhang
Format: Article
Language:English
Published: SpringerOpen 2016-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1238-2
Description
Summary:Abstract Let q ≥ 2 $q\geq2$ be a fixed integer, A = A ( q ) ≤ q $A=A(q)\leq q$ , B = B ( q ) ≤ q $B=B(q)\leq q$ , and H = H ( q ) ≤ q $H=H(q)\leq q$ . Define ħ ( A , B , H ) = { a ∈ Z ∣ ( a , q ) = 1 , a b ≡ 1 ( mod q ) , 1 ≤ a ≤ A , 1 ≤ b ≤ B , | a − b | ≤ H } . $$\hbar(A,B,H)= \bigl\{ a\in\mathbb{Z}\mid (a,q)=1, ab\equiv1\pmod{q}, 1\leq a\leq A, 1\leq b\leq B, \vert a-b\vert \leq H \bigr\} . $$ With the aid of the estimates for the general Kloosterman sums and the properties of trigonometric sums, we obtain an upper bound of the general partial Gaussian sums over the number set ħ ( A , B , H ) $\hbar(A,B,H)$ .
ISSN:1029-242X