Summary: | Abstract Let q ≥ 2 $q\geq2$ be a fixed integer, A = A ( q ) ≤ q $A=A(q)\leq q$ , B = B ( q ) ≤ q $B=B(q)\leq q$ , and H = H ( q ) ≤ q $H=H(q)\leq q$ . Define ħ ( A , B , H ) = { a ∈ Z ∣ ( a , q ) = 1 , a b ≡ 1 ( mod q ) , 1 ≤ a ≤ A , 1 ≤ b ≤ B , | a − b | ≤ H } . $$\hbar(A,B,H)= \bigl\{ a\in\mathbb{Z}\mid (a,q)=1, ab\equiv1\pmod{q}, 1\leq a\leq A, 1\leq b\leq B, \vert a-b\vert \leq H \bigr\} . $$ With the aid of the estimates for the general Kloosterman sums and the properties of trigonometric sums, we obtain an upper bound of the general partial Gaussian sums over the number set ħ ( A , B , H ) $\hbar(A,B,H)$ .
|