Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles

An iron-based soft magnetic composite with Fe3O4-MnZnFe2O4 insulation coating has been prepared by powder metallurgy method. This work investigated the microstructure and magnetic properties of Fe/Fe3O4-MnZnFe2O4 powder cores. Scanning electron microscopy (SEM) coupled with an energy dispersive spec...

Full description

Bibliographic Details
Main Authors: Yuye Xie, Pengfei Yan, Biao Yan
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/8/9/702
Description
Summary:An iron-based soft magnetic composite with Fe3O4-MnZnFe2O4 insulation coating has been prepared by powder metallurgy method. This work investigated the microstructure and magnetic properties of Fe/Fe3O4-MnZnFe2O4 powder cores. Scanning electron microscopy (SEM) coupled with an energy dispersive spectrometry (EDS) analysis indicated that the Fe3O4 and MnZnFe2O4 nanoparticles were uniformly coated on the surface of Fe powders. The co-existence of Fe3O4 and MnZnFe2O4 contributes to the preferable distribution of nano-sized insulation powders and excellent soft magnetic properties of soft magnetic composite (SMC) with high saturation magnetization Ms (215 A·m2/kg), low core loss (178.7 W/kg measured at 100 kHz, 50 mT), and high effective amplitude permeability of 114 (measured at 100 kHz). Overall, this work has great potential for realizing low core loss and outstanding soft magnetic properties of Fe-based powder cores.
ISSN:2075-4701