Neural Network-Based Closed-Loop Deep Brain Stimulation for Modulation of Pathological Oscillation in Parkinson’s Disease
Aiming at the problem that the Proportional-Integral-Derivative (PID) control strategy needs to readjust controller parameters for different Parkinson's disease (PD) states. This work proposes an improved control strategy that considers an artificial neural network control scheme. A backpropaga...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9180308/ |
Summary: | Aiming at the problem that the Proportional-Integral-Derivative (PID) control strategy needs to readjust controller parameters for different Parkinson's disease (PD) states. This work proposes an improved control strategy that considers an artificial neural network control scheme. A backpropagation neural network (BPNN) controller is designed to solve the above problem and further to improve the performance of the closed-loop control strategy. The training data set of the BPNN controller is obtained by controlling eight different PD states (PD<sub>a</sub> - PD<sub>h</sub>) by the PID controller and the BPNN controller is trained by the training data set to obtain a set of optimal weights. By modulating other different PD states (e.g. PD1 - PD3), the effectiveness of the PID-structure controller and BPNN controller are compared. We find that the BPNN controller can modulate different PD states without changing the controller parameters and reduce energy expenditure by 58.26%. This work is helpful for the design of more effective closed-loop deep brain stimulation (DBS) systems for clinical applications and provides a framework for the further development of closed-loop DBS. |
---|---|
ISSN: | 2169-3536 |