Effect of curcumin Extract on Ttranslocation of Glut 4 in C2C12 Myotubes

Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In...

Full description

Bibliographic Details
Main Authors: J Zavarreza, F Pourrajab, J Mohiti Ardakani, Sh Asadi, A Moradi
Format: Article
Language:fas
Published: Shahid Sadoughi University of Medical Sciences 2013-06-01
Series:Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd
Subjects:
Online Access:http://jssu.ssu.ac.ir/browse.php?a_code=A-10-285-1&slc_lang=en&sid=1
Description
Summary:Introduction: Curcumin is a major phenolic compound of Curcuma longa, which has long been used in traditional Indian medicine. Recently, curcumin has been reported to have antihyperglycemic activity in animal models. However, the molecular basis of this action has not been adequatedly described. In the present study the antihyperglycemic effect of curcumin was examined using C2C12 myoblast cells. Methods: The effects of curcumin were investigated in C2C12 myotubes by treating the cells with 40 µM of curcumin for 1.5 h. C2C12 myotubes were homogenized and the subcellular fractionation was prepared using ultracentrifugation; Then protein assay was performed using Bradford method and Glut4 determination was done using SDS-PAGE. Moreover, western immunoblotting techniques were exerted for semi-quantitative measurement. Data analysis was performed via gene tools software of Gel documentation and SPSS. An ANOVA test was used to compare three groups together. Results: Comparison of Glut4 levels in C2C12 myotubes showed that myotubes which were exposed to1.5 hours of 40 µM curcunin had higher Glut4 percentages in both cytosolic and membrane fractions and Glut4 percentages were significant with a confidence interval (CI) of 95% ( P<0.05 ). Conclusion: The study results showed that curcumin can strongly induce the increase of Glut4 translocation in differentiated C2C12 cells, indicating its possible regulatory role in the glucose metabolism of skeletal muscle cells
ISSN:2228-5741
2228-5733