DA-FSOD: A Novel Data Augmentation Scheme for Few-Shot Object Detection
Deep learning techniques continue to be used in various applications in recent years. However, when it is difficult to obtain adequate training samples, the performance of the depth model will degrade. Although few-shot learning and data enhancement techniques can relieve this dilemma, the diversity...
Main Authors: | Jian Yao, Tianyun Shi, Xiaoping Che, Jie Yao, Liuyi Wu |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
IEEE
2023-01-01
|
סדרה: | IEEE Access |
נושאים: | |
גישה מקוונת: | https://ieeexplore.ieee.org/document/10227279/ |
פריטים דומים
-
FSOD4RSI: Few-Shot Object Detection for Remote Sensing Images via Features Aggregation and Scale Attention
מאת: Honghao Gao, et al.
יצא לאור: (2024-01-01) -
Few-shot object detection based on positive-sample improvement
מאת: Yan Ouyang, et al.
יצא לאור: (2023-10-01) -
Multi-Similarity Enhancement Network for Few-Shot Segmentation
מאת: Hao Chen, et al.
יצא לאור: (2023-01-01) -
Few-Shot Object Detection in Remote Sensing Image Interpretation: Opportunities and Challenges
מאת: Sixu Liu, et al.
יצא לאור: (2022-09-01) -
Improving Augmentation Efficiency for Few-Shot Learning
מאת: Wonhee Cho, et al.
יצא לאור: (2022-01-01)