Applications of Solvable Lie Algebras to a Class of Third Order Equations

A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductor...

Full description

Bibliographic Details
Main Authors: María S. Bruzón, Rafael de la Rosa, María L. Gandarias, Rita Tracinà
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/2/254
Description
Summary:A family of third-order partial differential equations (PDEs) is analyzed. This family broadens out well-known PDEs such as the Korteweg-de Vries equation, the Gardner equation, and the Burgers equation, which model many real-world phenomena. Furthermore, several macroscopic models for semiconductors considering quantum effects—for example, models for the transmission of electrical lines and quantum hydrodynamic models—are governed by third-order PDEs of this family. For this family, all point symmetries have been derived. These symmetries are used to determine group-invariant solutions from three-dimensional solvable subgroups of the complete symmetry group, which allow us to reduce the given PDE to a first-order nonlinear ordinary differential equation (ODE). Finally, exact solutions are obtained by solving the first-order nonlinear ODEs or by taking into account the Type-II hidden symmetries that appear in the reduced second-order ODEs.
ISSN:2227-7390