Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN

Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulatio...

Full description

Bibliographic Details
Main Authors: Venkatachalam Kandasamy, Štěpán Hubálovský, Pavel Trojovský
Format: Article
Language:English
Published: PeerJ Inc. 2022-05-01
Series:PeerJ Computer Science
Subjects:
Online Access:https://peerj.com/articles/cs-953.pdf
Description
Summary:Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. With the recent advancement of generative adversarial networks (GANs) in deep learning models, DF has become an essential part of social media. To detect forged video and images, numerous methods have been developed, and those methods are focused on a particular domain and obsolete in the case of new attacks/threats. Hence, a novel method needs to be developed to tackle new attacks. The method introduced in this article can detect various types of spoofs of images and videos that are computationally generated using deep learning models, such as variants of long short-term memory and convolutional neural networks. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The proposed DF detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and WildDeepfake. The evaluated results show the effectiveness of the proposed method.
ISSN:2376-5992