Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type

The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub>&...

Full description

Bibliographic Details
Main Authors: Mariia Myronova, Jiří Patera, Marzena Szajewska
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1737
_version_ 1797550425965068288
author Mariia Myronova
Jiří Patera
Marzena Szajewska
author_facet Mariia Myronova
Jiří Patera
Marzena Szajewska
author_sort Mariia Myronova
collection DOAJ
description The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified.
first_indexed 2024-03-10T15:29:06Z
format Article
id doaj.art-f3f4b1a7ccb24d2998b38cdf085b80c2
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T15:29:06Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-f3f4b1a7ccb24d2998b38cdf085b80c22023-11-20T17:49:41ZengMDPI AGSymmetry2073-89942020-10-011210173710.3390/sym12101737Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic TypeMariia Myronova0Jiří Patera1Marzena Szajewska2Département de Physique, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, CanadaCentre de Recherches Mathématique, Université de Montréal, C. P. 6128 Centre-Ville, Montréal, QC H3C 3J7, CanadaDepartment of Mathematics, University of Białystok, 1M Ciołkowskiego, PL-15-245 Białystok, PolandThe invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>4</mn></msub></semantics></math></inline-formula>. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of <i>k</i> orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>2</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>H</mi><mn>3</mn></msub></semantics></math></inline-formula>. The geometrical structures of nested polytopes are exemplified.https://www.mdpi.com/2073-8994/12/10/1737Coxeter groupnested polytopeorbit indexhigher-order indexanomaly numberweight multiplicity
spellingShingle Mariia Myronova
Jiří Patera
Marzena Szajewska
Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
Symmetry
Coxeter group
nested polytope
orbit index
higher-order index
anomaly number
weight multiplicity
title Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_full Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_fullStr Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_full_unstemmed Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_short Nested Polyhedra and Indices of Orbits of Coxeter Groups of Non-Crystallographic Type
title_sort nested polyhedra and indices of orbits of coxeter groups of non crystallographic type
topic Coxeter group
nested polytope
orbit index
higher-order index
anomaly number
weight multiplicity
url https://www.mdpi.com/2073-8994/12/10/1737
work_keys_str_mv AT mariiamyronova nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype
AT jiripatera nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype
AT marzenaszajewska nestedpolyhedraandindicesoforbitsofcoxetergroupsofnoncrystallographictype