Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models
Systemic sclerosis (SSc) is an autoimmune disorder characterized by fibrosis of the skin and internal organs. Despite several studies on SSc treatments, effective treatments for SSc are still lacking. Since evidence suggests an association between intestinal microbiota and SSc, we focused on butyrat...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/22/5/2765 |
Summary: | Systemic sclerosis (SSc) is an autoimmune disorder characterized by fibrosis of the skin and internal organs. Despite several studies on SSc treatments, effective treatments for SSc are still lacking. Since evidence suggests an association between intestinal microbiota and SSc, we focused on butyrate, which has beneficial effects in autoimmune diseases as a bacterial metabolite. Here, we investigated the therapeutic potential of sodium butyrate (SB) using a bleomycin-induced fibrosis mouse model of SSc and human dermal fibroblasts (HDFs). SB attenuated bleomycin-induced dermal and lung fibrosis in mice. SB influenced fecal microbiota composition (phyla Actinobacteria and Bacteroidetes, genera <i>Bifidobacterium</i> and <i>Ruminococcus_g2</i>). SB controlled macrophage differentiation in mesenteric lymph nodes, spleen, and bronchoalveolar lavage cells of mice with bleomycin-induced skin fibrosis. Profibrotic and proinflammatory gene expression was suppressed by SB administration in skin. Furthermore, SB inhibited transforming growth factor β1-responsive proinflammatory expression with increased acetylation of histone 3 in HDFs. Subcutaneous SB application had antifibrogenic effects on the skin. Butyrate ameliorated skin and lung fibrosis by improving anti-inflammatory activity in a mouse model of SSc. Butyrate may exhibit indirect and direct anti-fibrogenic action on fibroblasts by regulating macrophage differentiation and inhibition of histone deacetylase 3. These findings suggest butyrate as an SSc treatment. |
---|---|
ISSN: | 1661-6596 1422-0067 |