Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity

"In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _{\Omega}|\nabla u|^{p}dx)\Delta_p u=|u|^{...

Full description

Bibliographic Details
Main Authors: Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang
Format: Article
Language:English
Published: AIMS Press 2020-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020139/fulltext.html
Description
Summary:&quot;In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _{\Omega}|\nabla u|^{p}dx)\Delta_p u=|u|^{q-2}u\ln u^2, ~x\in\Omega \\ u=0, ~\ x\in \partial\Omega, \end{array} \right.\end{equation*}where $\Omega\subset \mathbb{R}^{N}$ is a smooth bounded domain, $a, b&gt;0$ are constant, 4 ≤ 2<em>p</em> &lt; <em>q</em> &lt; <em>p</em><sup>*</sup> and <em>N</em> &gt; <em>p</em>. By using constraint variational method, topological degree theory and the quantitative deformation lemma, we prove the existence of ground state sign-changing solutions with precisely two nodal domains.&quot;
ISSN:2473-6988