Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity

"In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _{\Omega}|\nabla u|^{p}dx)\Delta_p u=|u|^{...

Full description

Bibliographic Details
Main Authors: Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang
Format: Article
Language:English
Published: AIMS Press 2020-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020139/fulltext.html
_version_ 1819205165806256128
author Ya-Lei Li
Da-Bin Wang
Jin-Long Zhang
author_facet Ya-Lei Li
Da-Bin Wang
Jin-Long Zhang
author_sort Ya-Lei Li
collection DOAJ
description &quot;In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _{\Omega}|\nabla u|^{p}dx)\Delta_p u=|u|^{q-2}u\ln u^2, ~x\in\Omega \\ u=0, ~\ x\in \partial\Omega, \end{array} \right.\end{equation*}where $\Omega\subset \mathbb{R}^{N}$ is a smooth bounded domain, $a, b&gt;0$ are constant, 4 ≤ 2<em>p</em> &lt; <em>q</em> &lt; <em>p</em><sup>*</sup> and <em>N</em> &gt; <em>p</em>. By using constraint variational method, topological degree theory and the quantitative deformation lemma, we prove the existence of ground state sign-changing solutions with precisely two nodal domains.&quot;
first_indexed 2024-12-23T04:47:22Z
format Article
id doaj.art-f4040c9ae59f493bbe4b02c0ec645913
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-23T04:47:22Z
publishDate 2020-02-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-f4040c9ae59f493bbe4b02c0ec6459132022-12-21T17:59:35ZengAIMS PressAIMS Mathematics2473-69882020-02-01532100211210.3934/math.2020139Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearityYa-Lei Li0Da-Bin Wang1Jin-Long Zhang2Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. ChinaDepartment of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. ChinaDepartment of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, P. R. China&quot;In this paper, we study the existence of ground state sign-changing solutions for following $p$-Laplacian Kirchhoff-type problem with logarithmic nonlinearity\begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -(a+ b\int _{\Omega}|\nabla u|^{p}dx)\Delta_p u=|u|^{q-2}u\ln u^2, ~x\in\Omega \\ u=0, ~\ x\in \partial\Omega, \end{array} \right.\end{equation*}where $\Omega\subset \mathbb{R}^{N}$ is a smooth bounded domain, $a, b&gt;0$ are constant, 4 ≤ 2<em>p</em> &lt; <em>q</em> &lt; <em>p</em><sup>*</sup> and <em>N</em> &gt; <em>p</em>. By using constraint variational method, topological degree theory and the quantitative deformation lemma, we prove the existence of ground state sign-changing solutions with precisely two nodal domains.&quot;https://www.aimspress.com/article/10.3934/math.2020139/fulltext.htmlp-laplacian kirchhoff-type equationnonlocal termvariation methodssign-changing solutions
spellingShingle Ya-Lei Li
Da-Bin Wang
Jin-Long Zhang
Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
AIMS Mathematics
p-laplacian kirchhoff-type equation
nonlocal term
variation methods
sign-changing solutions
title Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
title_full Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
title_fullStr Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
title_full_unstemmed Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
title_short Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity
title_sort sign changing solutions for a class of p laplacian kirchhoff type problem with logarithmic nonlinearity
topic p-laplacian kirchhoff-type equation
nonlocal term
variation methods
sign-changing solutions
url https://www.aimspress.com/article/10.3934/math.2020139/fulltext.html
work_keys_str_mv AT yaleili signchangingsolutionsforaclassofplaplaciankirchhofftypeproblemwithlogarithmicnonlinearity
AT dabinwang signchangingsolutionsforaclassofplaplaciankirchhofftypeproblemwithlogarithmicnonlinearity
AT jinlongzhang signchangingsolutionsforaclassofplaplaciankirchhofftypeproblemwithlogarithmicnonlinearity