Model for contact formation of novel TeO2 containing Pb-free silver paste on n+ and p+ doped crystalline silicon

Silver (Ag) pastes are widely used in the global market for most solar cell architectures. Thereby, lead (Pb) is no longer wanted in productions for environmental reasons. In this work, a model for the contact formation between Pb-free, tellurium oxide (TeO2) containing screen-printable Ag pastes an...

Full description

Bibliographic Details
Main Authors: Geml Fabian, Gapp Benjamin, Johnson Simon, Sutton Patricia, Goode Angela, Booth Jonathan, Plagwitz Heiko, Hahn Giso
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:EPJ Photovoltaics
Subjects:
Online Access:https://www.epj-pv.org/articles/epjpv/full_html/2023/01/pv220056/pv220056.html
Description
Summary:Silver (Ag) pastes are widely used in the global market for most solar cell architectures. Thereby, lead (Pb) is no longer wanted in productions for environmental reasons. In this work, a model for the contact formation between Pb-free, tellurium oxide (TeO2) containing screen-printable Ag pastes and silicon is presented. It is shown that Te plays a key role in this model. Te is not only an important part in etching the surface passivation layers with TeO2 dissolving the dielectric layer but also for a formation of the contacts with Te forming a compound consisting of Ag2Te. Using EDX mapping, local contact regions can be examined and interpreted for contact formation. The used paste system enables far more flexible paste mixturing leading to a novel developed commercial paste which is on a par with other pastes used in industry concerning the resulting contact properties. This is also demonstrated in this work by the very low contact resistivity of less than 1 mΩcm2 over a wide range of firing peak temperatures. It is additionally shown that good resistivities can be achieved on both n+- and p+-doped regions.
ISSN:2105-0716