Sobolev-type orthogonal polynomials and their zeros
When σ is a quasi-definite moment functional on P, the space of polynomials in one variable, we consider a symmetric bilinear form φ(·, ·) on P ×P defined by φ(p, q) := <σ, pq> +λp^(r)(a)q^(r)(a)+µp^(s)(b)q^(s)(b), where λ, µ, a, b are complex numbers and r, s are non-negative integers. We fin...
Main Authors: | D.H. Kim, K.H. Kwon, F. Marcellán, S.B. Park |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1997-01-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1997(3)/423-444.pdf |
Similar Items
-
On the positivity of some bilinear functionals for discrete Sobolev orthogonal polynomials
by: A. Draux, et al.
Published: (2001-01-01) -
Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials
by: Abel Díaz-González, et al.
Published: (2023-04-01) -
On some hypergeometric Sobolev orthogonal polynomials with several continuous parameters
by: Sergey Zagorodnyuk
Published: (2023-10-01) -
Eigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomials
by: Juan F. Mañas-Mañas, et al.
Published: (2020-02-01) -
Fourier coefficients for Laguerre–Sobolev type orthogonal polynomials
by: Alejandro Molano
Published: (2023-07-01)