The formin protein mDia2 serves as a marker of spindle pole dynamics in vitrified-warmed mouse oocytes.

The mouse diaphanous 2 (mDia2) protein belongs to the formin family and has been shown to nucleate actin filaments and stabilize microtubules, thus indicating a role in cytoskeleton organization. Our previous study, which showed that mDia2 specifically localizes to spindle poles of metaphase I mouse...

Full description

Bibliographic Details
Main Authors: Hyejin Shin, Haengseok Song, Chang Suk Suh, Hyunjung Jade Lim
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3777981?pdf=render
Description
Summary:The mouse diaphanous 2 (mDia2) protein belongs to the formin family and has been shown to nucleate actin filaments and stabilize microtubules, thus indicating a role in cytoskeleton organization. Our previous study, which showed that mDia2 specifically localizes to spindle poles of metaphase I mouse oocytes and NIH3T3 cells, provided the first evidence of its spindle pole-associated cellular function. In the present study, we aim to determine whether spindle pole proteins, such as mDia2 and pericentrin, can be used to monitor the status of spindle poles in cryopreserved mouse oocytes. We show herein that mDia2 exhibits an overlapping distribution with pericentrin, which is a crucial component of centrosomes and microtubule organizing centers (MTOCs). In vitrified-warmed oocytes, the overlapping distribution of mDia2 and pericentrin was immediately detected after thawing, thereby suggesting that mDia2 maintains a tight association with the spindle pole machinery. Interestingly, we observed that microtubules extend from mDia2 clusters in cytoplasmic MTOCs after thawing. This result suggests that mDia2 is a major MTOC component that is closely associated with pericentrin and that it plays a role in microtubule growth from MTOCs. Collectively, our results provide evidence that mDia2 is a novel marker of spindle pole dynamics before and after cryopreservation.
ISSN:1932-6203