Design of New Dispersants Using Machine Learning and Visual Analytics
Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/15/5/1324 |
_version_ | 1797614553988595712 |
---|---|
author | María Jimena Martínez Roi Naveiro Axel J. Soto Pablo Talavante Shin-Ho Kim Lee Ramón Gómez Arrayas Mario Franco Pablo Mauleón Héctor Lozano Ordóñez Guillermo Revilla López Marco Bernabei Nuria E. Campillo Ignacio Ponzoni |
author_facet | María Jimena Martínez Roi Naveiro Axel J. Soto Pablo Talavante Shin-Ho Kim Lee Ramón Gómez Arrayas Mario Franco Pablo Mauleón Héctor Lozano Ordóñez Guillermo Revilla López Marco Bernabei Nuria E. Campillo Ignacio Ponzoni |
author_sort | María Jimena Martínez |
collection | DOAJ |
description | Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.50</mn><mo>±</mo><mn>0.34</mn></mrow></semantics></math></inline-formula> and a root mean square error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.56</mn><mo>±</mo><mn>0.47</mn></mrow></semantics></math></inline-formula>, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties. |
first_indexed | 2024-03-11T07:13:04Z |
format | Article |
id | doaj.art-f437d7b0a41c4524bff817acb649ed59 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-11T07:13:04Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-f437d7b0a41c4524bff817acb649ed592023-11-17T08:29:17ZengMDPI AGPolymers2073-43602023-03-01155132410.3390/polym15051324Design of New Dispersants Using Machine Learning and Visual AnalyticsMaría Jimena Martínez0Roi Naveiro1Axel J. Soto2Pablo Talavante3Shin-Ho Kim Lee4Ramón Gómez Arrayas5Mario Franco6Pablo Mauleón7Héctor Lozano Ordóñez8Guillermo Revilla López9Marco Bernabei10Nuria E. Campillo11Ignacio Ponzoni12ISISTAN (CONICET-UNCPBA) Campus Universitario—Paraje Arroyo Seco, Tandil 7000, ArgentinaInstitute of Mathematical Sciences (ICMAT-CSIC), Nicolás Cabrera, nº 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, SpainInstitute for Computer Science and Engineering (UNS–CONICET), San Andrés 800, Campus Palihue, Bahía Blanca 8000, ArgentinaAItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, SpainAItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, SpainAItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, SpainDepartment of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem) UAM, 28049 Madrid, SpainDepartment of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem) UAM, 28049 Madrid, SpainRepsol Technology Lab DC Technology & Corporate Venturing, Agustín de Betancourt s/n, Móstoles, 28935 Madrid, SpainRepsol Technology Lab DC Technology & Corporate Venturing, Agustín de Betancourt s/n, Móstoles, 28935 Madrid, SpainRepsol Technology Lab DC Technology & Corporate Venturing, Agustín de Betancourt s/n, Móstoles, 28935 Madrid, SpainInstitute of Mathematical Sciences (ICMAT-CSIC), Nicolás Cabrera, nº 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, SpainInstitute for Computer Science and Engineering (UNS–CONICET), San Andrés 800, Campus Palihue, Bahía Blanca 8000, ArgentinaArtificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.50</mn><mo>±</mo><mn>0.34</mn></mrow></semantics></math></inline-formula> and a root mean square error of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.56</mn><mo>±</mo><mn>0.47</mn></mrow></semantics></math></inline-formula>, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties.https://www.mdpi.com/2073-4360/15/5/1324polyisobutyleneblotter spotartificial intelligenceBayesian regression |
spellingShingle | María Jimena Martínez Roi Naveiro Axel J. Soto Pablo Talavante Shin-Ho Kim Lee Ramón Gómez Arrayas Mario Franco Pablo Mauleón Héctor Lozano Ordóñez Guillermo Revilla López Marco Bernabei Nuria E. Campillo Ignacio Ponzoni Design of New Dispersants Using Machine Learning and Visual Analytics Polymers polyisobutylene blotter spot artificial intelligence Bayesian regression |
title | Design of New Dispersants Using Machine Learning and Visual Analytics |
title_full | Design of New Dispersants Using Machine Learning and Visual Analytics |
title_fullStr | Design of New Dispersants Using Machine Learning and Visual Analytics |
title_full_unstemmed | Design of New Dispersants Using Machine Learning and Visual Analytics |
title_short | Design of New Dispersants Using Machine Learning and Visual Analytics |
title_sort | design of new dispersants using machine learning and visual analytics |
topic | polyisobutylene blotter spot artificial intelligence Bayesian regression |
url | https://www.mdpi.com/2073-4360/15/5/1324 |
work_keys_str_mv | AT mariajimenamartinez designofnewdispersantsusingmachinelearningandvisualanalytics AT roinaveiro designofnewdispersantsusingmachinelearningandvisualanalytics AT axeljsoto designofnewdispersantsusingmachinelearningandvisualanalytics AT pablotalavante designofnewdispersantsusingmachinelearningandvisualanalytics AT shinhokimlee designofnewdispersantsusingmachinelearningandvisualanalytics AT ramongomezarrayas designofnewdispersantsusingmachinelearningandvisualanalytics AT mariofranco designofnewdispersantsusingmachinelearningandvisualanalytics AT pablomauleon designofnewdispersantsusingmachinelearningandvisualanalytics AT hectorlozanoordonez designofnewdispersantsusingmachinelearningandvisualanalytics AT guillermorevillalopez designofnewdispersantsusingmachinelearningandvisualanalytics AT marcobernabei designofnewdispersantsusingmachinelearningandvisualanalytics AT nuriaecampillo designofnewdispersantsusingmachinelearningandvisualanalytics AT ignacioponzoni designofnewdispersantsusingmachinelearningandvisualanalytics |