Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations

In this paper, we study semi-Hyers–Ulam–Rassias stability and generalized semi-Hyers–Ulam–Rassias stability of differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x...

Full description

Bibliographic Details
Main Author: Daniela Marian
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/24/3260
_version_ 1797502686479777792
author Daniela Marian
author_facet Daniela Marian
author_sort Daniela Marian
collection DOAJ
description In this paper, we study semi-Hyers–Ulam–Rassias stability and generalized semi-Hyers–Ulam–Rassias stability of differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><mi>x</mi><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>t</mi></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mrow><mo>″</mo></mrow></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msup><mi>x</mi><mo>′</mo></msup><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>,</mo><mspace width="1.em"></mspace><mi>x</mi><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mspace width="1.em"></mspace><mi>if</mi><mspace width="1.em"></mspace><mi>t</mi><mo>≤</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> using the Laplace transform. Our results complete those obtained by S. M. Jung and J. Brzdek for the equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><mi>x</mi><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T03:37:41Z
format Article
id doaj.art-f452cd126081466f90fbed586645d829
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:37:41Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f452cd126081466f90fbed586645d8292023-11-23T09:26:32ZengMDPI AGMathematics2227-73902021-12-01924326010.3390/math9243260Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential EquationsDaniela Marian0Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, RomaniaIn this paper, we study semi-Hyers–Ulam–Rassias stability and generalized semi-Hyers–Ulam–Rassias stability of differential equations <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><mi>x</mi><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>t</mi></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mrow><mo>″</mo></mrow></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msup><mi>x</mi><mo>′</mo></msup><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mi>f</mi><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>,</mo><mspace width="1.em"></mspace><mi>x</mi><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>=</mo><mn>0</mn><mspace width="1.em"></mspace><mi>if</mi><mspace width="1.em"></mspace><mi>t</mi><mo>≤</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> using the Laplace transform. Our results complete those obtained by S. M. Jung and J. Brzdek for the equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><mi>x</mi><mfenced separators="" open="(" close=")"><mi>t</mi><mo>−</mo><mn>1</mn></mfenced><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/24/3260semi-Hyers–Ulam–Rassias stabilitydelay differential equationsLaplace transform
spellingShingle Daniela Marian
Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
Mathematics
semi-Hyers–Ulam–Rassias stability
delay differential equations
Laplace transform
title Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
title_full Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
title_fullStr Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
title_full_unstemmed Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
title_short Laplace Transform and Semi-Hyers–Ulam–Rassias Stability of Some Delay Differential Equations
title_sort laplace transform and semi hyers ulam rassias stability of some delay differential equations
topic semi-Hyers–Ulam–Rassias stability
delay differential equations
Laplace transform
url https://www.mdpi.com/2227-7390/9/24/3260
work_keys_str_mv AT danielamarian laplacetransformandsemihyersulamrassiasstabilityofsomedelaydifferentialequations