Summary: | Abstract Background The shortage of food based feedstocks has been one of the stumbling blocks in industrial biomanufacturing. The acetone bioproduction from the traditional acetone–butanol–ethanol fermentation is limited by the non-specificity of products and competitive utilization of food-based substrates. Using genetically modified Escherichia coli to produce acetone as sole product from the cost-effective non-food based substrates showed great potential to overcome these problems. Results A novel acetone biosynthetic pathway were constructed based on genes from Clostridium acetobutylicum (thlA encoding for thiolase, adc encoding for acetoacetate decarboxylase, ctfAB encoding for coenzyme A transferase) and Escherichia coli MG1655 (atoB encoding acetyl-CoA acetyltransferase, atoDA encoding for acetyl-CoA: acetoacetyl-CoA transferase subunit α and β). Among these constructs, one recombinant MG1655 derivative containing the hybrid pathway consisting of thlA, atoDA, and adc, produced the highest level of acetone from acetate. Reducing the gluconeogenesis pathway had little effect on acetone production, while blocking the TCA cycle by knocking out the icdA gene enhanced the yield of acetone significantly. As a result, acetone concentration increased up to 113.18 mM in 24 h by the resting cell culture coupling with gas-stripping methods. Conclusions An engineered E. coli strain with optimized hybrid acetone biosynthetic pathway can utilize acetate as substrate efficiently to synthesize acetone without other non-gas byproducts. It provides a potential method for industrial biomanufacturing of acetone by engineered E. coli strains from non-food based substrate.
|