Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons

Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament lig...

Full description

Bibliographic Details
Main Authors: Markus T. Sainio, Tiina Rasila, Svetlana M. Molchanova, Julius Järvilehto, Rubén Torregrosa-Muñumer, Sandra Harjuhaahto, Jana Pennonen, Nadine Huber, Sanna-Kaisa Herukka, Annakaisa Haapasalo, Henrik Zetterberg, Tomi Taira, Johanna Palmio, Emil Ylikallio, Henna Tyynismaa
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-02-01
Series:Frontiers in Cell and Developmental Biology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcell.2021.820105/full
_version_ 1819278511243788288
author Markus T. Sainio
Tiina Rasila
Svetlana M. Molchanova
Julius Järvilehto
Rubén Torregrosa-Muñumer
Sandra Harjuhaahto
Jana Pennonen
Nadine Huber
Sanna-Kaisa Herukka
Sanna-Kaisa Herukka
Annakaisa Haapasalo
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Tomi Taira
Tomi Taira
Johanna Palmio
Emil Ylikallio
Emil Ylikallio
Henna Tyynismaa
Henna Tyynismaa
Henna Tyynismaa
author_facet Markus T. Sainio
Tiina Rasila
Svetlana M. Molchanova
Julius Järvilehto
Rubén Torregrosa-Muñumer
Sandra Harjuhaahto
Jana Pennonen
Nadine Huber
Sanna-Kaisa Herukka
Sanna-Kaisa Herukka
Annakaisa Haapasalo
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Tomi Taira
Tomi Taira
Johanna Palmio
Emil Ylikallio
Emil Ylikallio
Henna Tyynismaa
Henna Tyynismaa
Henna Tyynismaa
author_sort Markus T. Sainio
collection DOAJ
description Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot–Marie–Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
first_indexed 2024-12-24T00:13:10Z
format Article
id doaj.art-f4541e595e534acebc0b20319f10d18f
institution Directory Open Access Journal
issn 2296-634X
language English
last_indexed 2024-12-24T00:13:10Z
publishDate 2022-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Cell and Developmental Biology
spelling doaj.art-f4541e595e534acebc0b20319f10d18f2022-12-21T17:24:49ZengFrontiers Media S.A.Frontiers in Cell and Developmental Biology2296-634X2022-02-01910.3389/fcell.2021.820105820105Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor NeuronsMarkus T. Sainio0Tiina Rasila1Svetlana M. Molchanova2Julius Järvilehto3Rubén Torregrosa-Muñumer4Sandra Harjuhaahto5Jana Pennonen6Nadine Huber7Sanna-Kaisa Herukka8Sanna-Kaisa Herukka9Annakaisa Haapasalo10Henrik Zetterberg11Henrik Zetterberg12Henrik Zetterberg13Henrik Zetterberg14Henrik Zetterberg15Tomi Taira16Tomi Taira17Johanna Palmio18Emil Ylikallio19Emil Ylikallio20Henna Tyynismaa21Henna Tyynismaa22Henna Tyynismaa23Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandMolecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FinlandA.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FinlandDepartment of Neurology, Kuopio University Hospital, Kuopio, FinlandNeurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, FinlandA.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FinlandClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, SwedenDepartment of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, SwedenDepartment of Neurodegenerative Disease, UCL Institute of Neurology, London, United KingdomUK Dementia Research Institute at UCL, London, United Kingdom0Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China1Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland2Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland3Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland4Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, FinlandStem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland2Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland5Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, FinlandNeurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot–Marie–Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.https://www.frontiersin.org/articles/10.3389/fcell.2021.820105/fullneurofilament light (NfL)motor neurodegenerationaxonCharcot-Marie-Tooth (CMT) diseaseinduced pluripotent stem cellsmotor neuron (MN)
spellingShingle Markus T. Sainio
Tiina Rasila
Svetlana M. Molchanova
Julius Järvilehto
Rubén Torregrosa-Muñumer
Sandra Harjuhaahto
Jana Pennonen
Nadine Huber
Sanna-Kaisa Herukka
Sanna-Kaisa Herukka
Annakaisa Haapasalo
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Henrik Zetterberg
Tomi Taira
Tomi Taira
Johanna Palmio
Emil Ylikallio
Emil Ylikallio
Henna Tyynismaa
Henna Tyynismaa
Henna Tyynismaa
Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
Frontiers in Cell and Developmental Biology
neurofilament light (NfL)
motor neurodegeneration
axon
Charcot-Marie-Tooth (CMT) disease
induced pluripotent stem cells
motor neuron (MN)
title Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
title_full Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
title_fullStr Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
title_full_unstemmed Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
title_short Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons
title_sort neurofilament light regulates axon caliber synaptic activity and organelle trafficking in cultured human motor neurons
topic neurofilament light (NfL)
motor neurodegeneration
axon
Charcot-Marie-Tooth (CMT) disease
induced pluripotent stem cells
motor neuron (MN)
url https://www.frontiersin.org/articles/10.3389/fcell.2021.820105/full
work_keys_str_mv AT markustsainio neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT tiinarasila neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT svetlanammolchanova neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT juliusjarvilehto neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT rubentorregrosamunumer neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT sandraharjuhaahto neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT janapennonen neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT nadinehuber neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT sannakaisaherukka neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT sannakaisaherukka neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT annakaisahaapasalo neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT henrikzetterberg neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT henrikzetterberg neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT henrikzetterberg neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT henrikzetterberg neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT henrikzetterberg neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT tomitaira neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT tomitaira neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT johannapalmio neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT emilylikallio neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT emilylikallio neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT hennatyynismaa neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT hennatyynismaa neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons
AT hennatyynismaa neurofilamentlightregulatesaxoncalibersynapticactivityandorganelletraffickinginculturedhumanmotorneurons