Association between progranulin serum levels and dietary intake.

INTRODUCTION:Progranulin (PGRN) is secreted by adipose tissue and has been linked to obesity, insulin resistance and type 2 diabetes mellitus. There is evidence that a high fat diet increases PGRN expression in rodent adipose tissue. In humans, the relationship between diet composition and concentra...

Full description

Bibliographic Details
Main Authors: Bruna Bellincanta Nicoletto, Roberta Aguiar Sarmento, Elis Forcellini Pedrollo, Thaiana Cirino Krolikowski, Luis Henrique Canani
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6097684?pdf=render
Description
Summary:INTRODUCTION:Progranulin (PGRN) is secreted by adipose tissue and has been linked to obesity, insulin resistance and type 2 diabetes mellitus. There is evidence that a high fat diet increases PGRN expression in rodent adipose tissue. In humans, the relationship between diet composition and concentration of PGRN is still unknown. OBJECTIVE:To investigate the association between dietary intake and serum PGRN levels. METHODS:This is an exploratory cross-sectional study including 85 subjects. Demographic, clinical, laboratory and anthropometric data were collected. Serum PGRN was determined by enzyme-linked immunosorbent assay after overnight fasting. Dietary intake was assessed by food frequency questionnaire validated for Brazilian southern population. Focused principal component analyses (FPCA) was used to verify the association of dietary components and food groups with PGRN levels. Sensitivity analyses were performed including only subjects with reporting according to the Goldberg and Black cut-offs of energy intake-energy expenditure ratio between 0.76 and 1.24. RESULTS:The median PGRN was 51.96 (42.18 to 68.30) ng/mL. Analyzing all sample, the FPCA showed no association of serum PGRN with total energy, protein, carbohydrate, fat and its types, fiber intake and dietary glycemic index; but a significant and positive association between solid fats and PGRN levels (p<0.05). Including only subjects with reporting according cut-off of energy intake-energy expenditure ratio between 0.76 and 1.24, FCPA showed significant and positive association of serum PGRN with saturated fatty acids and solid fats intake (p<0.05). In this subgroup, PGRN correlated with saturated fatty acids (r = 0.341; p = 0.031). Solid fats intake was independently associated to serum PGRN (beta = 0.294; p = 0.004) in multivariate model. CONCLUSION:The dietary intake of solid fats, mainly represented by saturated fatty acids, is associated to serum PGRN concentration in human subjects.
ISSN:1932-6203