Summary: | Soybean [Glycine max (L.) Merr.] is a short-day crop for which breeders want to expand the cultivation range to more northern agro-environments by introgressing alleles involved in early reproductive traits. To do so, we investigated quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) regions comprised within the E8 locus, a large undeciphered region (~7.0 Mbp to 44.5 Mbp) associated with early maturity located on chromosome GM04. We used a combination of two mapping algorithms, (i) inclusive composite interval mapping (ICIM) and (ii) genome-wide composite interval mapping (GCIM), to identify major and minor regions in two soybean populations (QS15524F2:F3 and QS15544RIL) having fixed E1, E2, E3, and E4 alleles. Using this approach, we identified three main QTL regions with high logarithm of the odds (LODs), phenotypic variation explained (PVE), and additive effects for maturity and pod-filling within the E8 region: GM04:16,974,874-17,152,230 (E8-r1); GM04:35,168,111-37,664,017 (E8-r2); and GM04:41,808,599-42,376,237 (E8-r3). Using a five-step variant analysis pipeline, we identified Protein far-red elongated hypocotyl 3 (Glyma.04G124300; E8-r1), E1-like-a (Glyma.04G156400; E8-r2), Light-harvesting chlorophyll-protein complex I subunit A4 (Glyma.04G167900; E8-r3), and Cycling dof factor 3 (Glyma.04G168300; E8-r3) as the most promising candidate genes for these regions. A combinatorial eQTL mapping approach identified significant regulatory interactions for 13 expression traits (e-traits), including Glyma.04G050200 (Early flowering 3/E6 locus), with the E8-r3 region. Four other important QTL regions close to or encompassing major flowering genes were also detected on chromosomes GM07, GM08, and GM16. In GM07:5,256,305-5,404,971, a missense polymorphism was detected in the candidate gene Glyma.07G058200 (Protein suppressor of PHYA-105). These findings demonstrate that the locus known as E8 is regulated by at least three distinct genomic regions, all of which comprise major flowering genes.
|