On approximating the error function

Abstract In the article, we present the necessary and sufficient condition for the parameter p on the interval ( 7 / 5 , ∞ ) $(7/5, \infty)$ such that the function x → erf ( x ) / B p ( x ) $x\rightarrow\operatorname{erf}(x)/B_{p}(x)$ is strictly increasing (decreasing) on ( 0 , ∞ ) $(0, \infty)$ ,...

Full description

Bibliographic Details
Main Authors: Zhen-Hang Yang, Yu-Ming Chu
Format: Article
Language:English
Published: SpringerOpen 2016-11-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1261-3
_version_ 1819090889661743104
author Zhen-Hang Yang
Yu-Ming Chu
author_facet Zhen-Hang Yang
Yu-Ming Chu
author_sort Zhen-Hang Yang
collection DOAJ
description Abstract In the article, we present the necessary and sufficient condition for the parameter p on the interval ( 7 / 5 , ∞ ) $(7/5, \infty)$ such that the function x → erf ( x ) / B p ( x ) $x\rightarrow\operatorname{erf}(x)/B_{p}(x)$ is strictly increasing (decreasing) on ( 0 , ∞ ) $(0, \infty)$ , and find the best possible parameters p, q on the interval ( 7 / 5 , ∞ ) $(7/5, \infty)$ such that the double inequality B p ( x ) < erf ( x ) < B q ( x ) $B_{p}(x)<\operatorname{erf}(x)<B_{q}(x)$ holds for all x > 0 $x>0$ , where erf ( x ) = 2 ∫ 0 x e − t 2 d t / π $\operatorname{erf}(x)=2\int_{0}^{x}e^{-t^{2}}\,dt/\sqrt{\pi}$ is the error function, B p ( x ) = 1 − λ ( p ) e − p x 2 − [ 1 − λ ( p ) ] e − μ ( p ) x 2 $B_{p}(x)=\sqrt{1-\lambda(p)e^{-px^{2}}-[1-\lambda(p)]e^{-\mu(p)x^{2}}}$ , λ ( p ) = 16 ( 5 p − 7 ) / [ ( 15 p 2 − 40 p + 28 ) ( 45 p 2 − 60 p − 4 ) ] $\lambda(p)=16(5p-7)/[(15p^{2}-40p+28)(45p^{2}-60p-4)]$ and μ ( p ) = 4 ( 5 p − 7 ) / [ 5 ( 3 p − 4 ) ] $\mu(p)=4(5p-7)/[5(3p-4)]$ .
first_indexed 2024-12-21T22:31:00Z
format Article
id doaj.art-f4631d0b36264ef3865a17355b4f918d
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-21T22:31:00Z
publishDate 2016-11-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-f4631d0b36264ef3865a17355b4f918d2022-12-21T18:48:06ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-11-012016111710.1186/s13660-016-1261-3On approximating the error functionZhen-Hang Yang0Yu-Ming Chu1School of Mathematics and Computation Sciences, Hunan City UniversitySchool of Mathematics and Computation Sciences, Hunan City UniversityAbstract In the article, we present the necessary and sufficient condition for the parameter p on the interval ( 7 / 5 , ∞ ) $(7/5, \infty)$ such that the function x → erf ( x ) / B p ( x ) $x\rightarrow\operatorname{erf}(x)/B_{p}(x)$ is strictly increasing (decreasing) on ( 0 , ∞ ) $(0, \infty)$ , and find the best possible parameters p, q on the interval ( 7 / 5 , ∞ ) $(7/5, \infty)$ such that the double inequality B p ( x ) < erf ( x ) < B q ( x ) $B_{p}(x)<\operatorname{erf}(x)<B_{q}(x)$ holds for all x > 0 $x>0$ , where erf ( x ) = 2 ∫ 0 x e − t 2 d t / π $\operatorname{erf}(x)=2\int_{0}^{x}e^{-t^{2}}\,dt/\sqrt{\pi}$ is the error function, B p ( x ) = 1 − λ ( p ) e − p x 2 − [ 1 − λ ( p ) ] e − μ ( p ) x 2 $B_{p}(x)=\sqrt{1-\lambda(p)e^{-px^{2}}-[1-\lambda(p)]e^{-\mu(p)x^{2}}}$ , λ ( p ) = 16 ( 5 p − 7 ) / [ ( 15 p 2 − 40 p + 28 ) ( 45 p 2 − 60 p − 4 ) ] $\lambda(p)=16(5p-7)/[(15p^{2}-40p+28)(45p^{2}-60p-4)]$ and μ ( p ) = 4 ( 5 p − 7 ) / [ 5 ( 3 p − 4 ) ] $\mu(p)=4(5p-7)/[5(3p-4)]$ .http://link.springer.com/article/10.1186/s13660-016-1261-3error functionmonotonicitybound
spellingShingle Zhen-Hang Yang
Yu-Ming Chu
On approximating the error function
Journal of Inequalities and Applications
error function
monotonicity
bound
title On approximating the error function
title_full On approximating the error function
title_fullStr On approximating the error function
title_full_unstemmed On approximating the error function
title_short On approximating the error function
title_sort on approximating the error function
topic error function
monotonicity
bound
url http://link.springer.com/article/10.1186/s13660-016-1261-3
work_keys_str_mv AT zhenhangyang onapproximatingtheerrorfunction
AT yumingchu onapproximatingtheerrorfunction