Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude
<p>Abstract</p> <p>Background</p> <p>In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss <it>Physcomitrella patens </it>has become an exciting model...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2004-07-01
|
Series: | BMC Biotechnology |
Online Access: | http://www.biomedcentral.com/1472-6750/4/13 |
_version_ | 1818148119742775296 |
---|---|
author | Reski Ralf Jost Wolfgang Huether Claudia M Horstmann Verena Decker Eva L |
author_facet | Reski Ralf Jost Wolfgang Huether Claudia M Horstmann Verena Decker Eva L |
author_sort | Reski Ralf |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss <it>Physcomitrella patens </it>has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its use in transgenic approaches requires expression vectors that incorporate sufficiently strong promoters. To satisfy this requirement, a set of plant expression vectors was constructed and equipped with either heterologous or endogenous promoters.</p> <p>Results</p> <p>Promoter activity was quantified using the dual-luciferase reporter assay system. The eight different heterologous promoter constructs tested exhibited expression levels spanning three orders of magnitude. Of these, the complete rice actin1 gene promoter showed the highest activity in <it>Physcomitrella</it>, followed by a truncated version of this promoter and three different versions of the cauliflower mosaic virus 35S promoter. In contrast, the <it>Agrobacterium tumefaciens </it>nopaline synthase promoter induced transcription rather weakly. Constructs including promoters commonly used in mammalian expression systems also proved to be functional in <it>Physcomitrella</it>. In addition, the 5' -regions of two <it>Physcomitrella </it>glycosyltransferases (i.e. α1,3-<it>fucosyltransferase </it>and β1,2-<it>xylosyltransferase</it>) were identified and functionally characterised in comparison to the heterologous promoters. Furthermore, motifs responsible for enhancement of translation efficiency – such as the TMV omega element and a modified sequence directly prior the start codon – were tested in this model.</p> <p>Conclusion</p> <p>We developed a vector set that enables gene expression studies, both in lower and higher land plants, thus providing valuable tools applicable in both basic and applied molecular research.</p> |
first_indexed | 2024-12-11T12:46:05Z |
format | Article |
id | doaj.art-f464967409bc42debdc629b6f3ba266d |
institution | Directory Open Access Journal |
issn | 1472-6750 |
language | English |
last_indexed | 2024-12-11T12:46:05Z |
publishDate | 2004-07-01 |
publisher | BMC |
record_format | Article |
series | BMC Biotechnology |
spelling | doaj.art-f464967409bc42debdc629b6f3ba266d2022-12-22T01:06:50ZengBMCBMC Biotechnology1472-67502004-07-01411310.1186/1472-6750-4-13Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitudeReski RalfJost WolfgangHuether Claudia MHorstmann VerenaDecker Eva L<p>Abstract</p> <p>Background</p> <p>In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss <it>Physcomitrella patens </it>has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its use in transgenic approaches requires expression vectors that incorporate sufficiently strong promoters. To satisfy this requirement, a set of plant expression vectors was constructed and equipped with either heterologous or endogenous promoters.</p> <p>Results</p> <p>Promoter activity was quantified using the dual-luciferase reporter assay system. The eight different heterologous promoter constructs tested exhibited expression levels spanning three orders of magnitude. Of these, the complete rice actin1 gene promoter showed the highest activity in <it>Physcomitrella</it>, followed by a truncated version of this promoter and three different versions of the cauliflower mosaic virus 35S promoter. In contrast, the <it>Agrobacterium tumefaciens </it>nopaline synthase promoter induced transcription rather weakly. Constructs including promoters commonly used in mammalian expression systems also proved to be functional in <it>Physcomitrella</it>. In addition, the 5' -regions of two <it>Physcomitrella </it>glycosyltransferases (i.e. α1,3-<it>fucosyltransferase </it>and β1,2-<it>xylosyltransferase</it>) were identified and functionally characterised in comparison to the heterologous promoters. Furthermore, motifs responsible for enhancement of translation efficiency – such as the TMV omega element and a modified sequence directly prior the start codon – were tested in this model.</p> <p>Conclusion</p> <p>We developed a vector set that enables gene expression studies, both in lower and higher land plants, thus providing valuable tools applicable in both basic and applied molecular research.</p>http://www.biomedcentral.com/1472-6750/4/13 |
spellingShingle | Reski Ralf Jost Wolfgang Huether Claudia M Horstmann Verena Decker Eva L Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude BMC Biotechnology |
title | Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude |
title_full | Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude |
title_fullStr | Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude |
title_full_unstemmed | Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude |
title_short | Quantitative promoter analysis in <it>Physcomitrella patens</it>: a set of plant vectors activating gene expression within three orders of magnitude |
title_sort | quantitative promoter analysis in it physcomitrella patens it a set of plant vectors activating gene expression within three orders of magnitude |
url | http://www.biomedcentral.com/1472-6750/4/13 |
work_keys_str_mv | AT reskiralf quantitativepromoteranalysisinitphyscomitrellapatensitasetofplantvectorsactivatinggeneexpressionwithinthreeordersofmagnitude AT jostwolfgang quantitativepromoteranalysisinitphyscomitrellapatensitasetofplantvectorsactivatinggeneexpressionwithinthreeordersofmagnitude AT huetherclaudiam quantitativepromoteranalysisinitphyscomitrellapatensitasetofplantvectorsactivatinggeneexpressionwithinthreeordersofmagnitude AT horstmannverena quantitativepromoteranalysisinitphyscomitrellapatensitasetofplantvectorsactivatinggeneexpressionwithinthreeordersofmagnitude AT deckereval quantitativepromoteranalysisinitphyscomitrellapatensitasetofplantvectorsactivatinggeneexpressionwithinthreeordersofmagnitude |