Structural Insights into LDPE/UHMWPE Blends Processed by γ-Irradiation

Ultra-high-molecular-weight polyethylene (UHMWPE) matrices containing low-density polyethylene (LDPE), hydroxyapatite (HAp) as filler, and rosemary extract (RM) as stabilizer were investigated for their qualification for long-term applications. The significant contributions of the blend components w...

Full description

Bibliographic Details
Main Authors: Traian Zaharescu, Nicoleta Nicula, Maria Râpă, Mihai Iordoc, Violeta Tsakiris, Virgil Emanuel Marinescu
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/3/696
Description
Summary:Ultra-high-molecular-weight polyethylene (UHMWPE) matrices containing low-density polyethylene (LDPE), hydroxyapatite (HAp) as filler, and rosemary extract (RM) as stabilizer were investigated for their qualification for long-term applications. The significant contributions of the blend components were analyzed, and variations in mechanical properties, oxidation strength, thermal behavior, crystallinity, and wettability were discussed. SEM images of microstructural peculiarities completed the introspective survey. The stability improvement due to the presence of both additives was an increase in the total degradation period of 67% in comparison with an unmodified HDPE/UHMWPE blend when the materials were subjected to a 50 kGy γ-dose. There was growth in activation energies from 121 kJ mol<sup>−1</sup> to 139 kJ mol<sup>−1</sup> when HAp and rosemary extract delayed oxidation. The exposure of samples to the action of γ-rays was found to be a proper procedure for accomplishing accelerated oxidative degradation. The presence of rosemary extract and HAp powder significantly increased the thermal and oxidation resistances. The calculation of material lifetimes at various temperatures provided meaningful information on the wearability and integrity of the inspected composites.
ISSN:2073-4360