Investigation of Surface Roughness in Incremental Sheet Forming of Conical Drawpieces from Pure Titanium Sheets

The article presents the results of the analysis of the influence of incremental sheet forming process parameters on surface roughness measured on both sides of conical drawpieces made from pure titanium Grade 2 sheets. The experimental plan was created on the basis of a central composite design. Th...

Full description

Bibliographic Details
Main Authors: Tomasz Trzepieciński, Marcin Szpunar, Andrzej Dzierwa, Krzysztof Żaba
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/12/4278
Description
Summary:The article presents the results of the analysis of the influence of incremental sheet forming process parameters on surface roughness measured on both sides of conical drawpieces made from pure titanium Grade 2 sheets. The experimental plan was created on the basis of a central composite design. The study assumed the variability of feed rate, spindle speed, and incremental step size in the following range: 500–2000 mm/min, 0–600 rpm, and 0.1–0.5 mm, respectively. Two strategies differing in the direction of the tool rotation in relation to the feed direction were also analysed. Analysis of variance is performed to understand the adequacy of the proposed model and the influence of the input parameters on the specific roughness parameter. The sensitivity of the process parameter on the selected surface roughness parameters was assessed using artificial neural networks. It was found that the change in the surface roughness of the inner surface of the drawpiece is not related to the change of surface roughness of the outer side. The morphology of the outer surface of the draw pieces was uniform with a much greater profile height than the inner surface that had interacted with the tool. Taking into account the outer surface of the drawpiece, the direction of tool rotation is also most closely correlated with the parameters Sa, Sz, and Sku. Step size and feed rate provide the highest information capacity in relation to skewness and kurtosis of the inner surface of the drawpiece.
ISSN:1996-1944