Medical Images Segmentation Operations

Extracting various valuable medical information from head MRI and CT series is one of the most important and challenging tasks in the area of medical image analysis. Due to the lack of automation for many of these tasks, they require meticulous preprocessing from the medical experts. Nevertheless, s...

Full description

Bibliographic Details
Main Authors: S. A. Musatian, A. V. Lomakin, S. Yu. Sartasov, L. K. Popyvanov, I. B. Monakhov, A. S. Chizhova
Format: Article
Language:English
Published: Ivannikov Institute for System Programming of the Russian Academy of Sciences 2018-10-01
Series:Труды Института системного программирования РАН
Subjects:
Online Access:https://ispranproceedings.elpub.ru/jour/article/view/563
_version_ 1818261408231456768
author S. A. Musatian
A. V. Lomakin
S. Yu. Sartasov
L. K. Popyvanov
I. B. Monakhov
A. S. Chizhova
author_facet S. A. Musatian
A. V. Lomakin
S. Yu. Sartasov
L. K. Popyvanov
I. B. Monakhov
A. S. Chizhova
author_sort S. A. Musatian
collection DOAJ
description Extracting various valuable medical information from head MRI and CT series is one of the most important and challenging tasks in the area of medical image analysis. Due to the lack of automation for many of these tasks, they require meticulous preprocessing from the medical experts. Nevertheless, some of these problems may have semi-automatic solutions, but they are still dependent on the person's competence. The main goal of our research project is to create an instrument that maximizes series processing automation degree. Our project consists of two parts: a set of algorithms for medical image processing and tools for its results interpretation. In this paper we present an overview of the best existing approaches in this field, as well the description of our own algorithms developed for similar tissue segmentation problems such as eye bony orbit and brain tumor segmentation based on convolutional neural networks. The investigation of performance of different neural network models for both tasks as well as neural ensembles applied to brain tumor segmentation is presented. We also introduce our software named "MISO Tool" which is created specifically for this type of problems. It allows tissues segmentation using pre-trained neural networks, DICOM pixel data manipulation and 3D reconstruction of segmented areas.
first_indexed 2024-12-12T18:46:45Z
format Article
id doaj.art-f485477cea1d40d395c608740837bc32
institution Directory Open Access Journal
issn 2079-8156
2220-6426
language English
last_indexed 2024-12-12T18:46:45Z
publishDate 2018-10-01
publisher Ivannikov Institute for System Programming of the Russian Academy of Sciences
record_format Article
series Труды Института системного программирования РАН
spelling doaj.art-f485477cea1d40d395c608740837bc322022-12-22T00:15:30ZengIvannikov Institute for System Programming of the Russian Academy of SciencesТруды Института системного программирования РАН2079-81562220-64262018-10-0130418319410.15514/ISPRAS-2018-30(4)-12563Medical Images Segmentation OperationsS. A. Musatian0A. V. Lomakin1S. Yu. Sartasov2L. K. Popyvanov3I. B. Monakhov4A. S. Chizhova5Санкт-Петербургский государственный университетСанкт-Петербургский государственный университетСанкт-Петербургский государственный университетСанкт-Петербургский государственный университетСанкт-Петербургский государственный университетСанкт-Петербургский государственный университетExtracting various valuable medical information from head MRI and CT series is one of the most important and challenging tasks in the area of medical image analysis. Due to the lack of automation for many of these tasks, they require meticulous preprocessing from the medical experts. Nevertheless, some of these problems may have semi-automatic solutions, but they are still dependent on the person's competence. The main goal of our research project is to create an instrument that maximizes series processing automation degree. Our project consists of two parts: a set of algorithms for medical image processing and tools for its results interpretation. In this paper we present an overview of the best existing approaches in this field, as well the description of our own algorithms developed for similar tissue segmentation problems such as eye bony orbit and brain tumor segmentation based on convolutional neural networks. The investigation of performance of different neural network models for both tasks as well as neural ensembles applied to brain tumor segmentation is presented. We also introduce our software named "MISO Tool" which is created specifically for this type of problems. It allows tissues segmentation using pre-trained neural networks, DICOM pixel data manipulation and 3D reconstruction of segmented areas.https://ispranproceedings.elpub.ru/jour/article/view/563глубокие нейронные сетисвёрточные нейронные сетиопухоли мозгакостные глазные орбитымедицинские изображения
spellingShingle S. A. Musatian
A. V. Lomakin
S. Yu. Sartasov
L. K. Popyvanov
I. B. Monakhov
A. S. Chizhova
Medical Images Segmentation Operations
Труды Института системного программирования РАН
глубокие нейронные сети
свёрточные нейронные сети
опухоли мозга
костные глазные орбиты
медицинские изображения
title Medical Images Segmentation Operations
title_full Medical Images Segmentation Operations
title_fullStr Medical Images Segmentation Operations
title_full_unstemmed Medical Images Segmentation Operations
title_short Medical Images Segmentation Operations
title_sort medical images segmentation operations
topic глубокие нейронные сети
свёрточные нейронные сети
опухоли мозга
костные глазные орбиты
медицинские изображения
url https://ispranproceedings.elpub.ru/jour/article/view/563
work_keys_str_mv AT samusatian medicalimagessegmentationoperations
AT avlomakin medicalimagessegmentationoperations
AT syusartasov medicalimagessegmentationoperations
AT lkpopyvanov medicalimagessegmentationoperations
AT ibmonakhov medicalimagessegmentationoperations
AT aschizhova medicalimagessegmentationoperations