Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol

IntroductionFew biomarkers can be used clinically to diagnose and assess the severity of depression. However, a decrease in activity and sleep efficiency can be observed in depressed patients, and recent technological developments have made it possible to measure these changes. In addition, physiolo...

Full description

Bibliographic Details
Main Authors: Taishiro Kishimoto, Shotaro Kinoshita, Toshiaki Kikuchi, Shogyoku Bun, Momoko Kitazawa, Toshiro Horigome, Yuki Tazawa, Akihiro Takamiya, Jinichi Hirano, Masaru Mimura, Kuo-ching Liang, Norihiro Koga, Yasushi Ochiai, Hiromi Ito, Yumiko Miyamae, Yuiko Tsujimoto, Kei Sakuma, Hisashi Kida, Gentaro Miura, Yuko Kawade, Akiko Goto, Fumihiro Yoshino
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-12-01
Series:Frontiers in Psychiatry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1025517/full
_version_ 1811195800492965888
author Taishiro Kishimoto
Taishiro Kishimoto
Shotaro Kinoshita
Shotaro Kinoshita
Toshiaki Kikuchi
Shogyoku Bun
Shogyoku Bun
Momoko Kitazawa
Toshiro Horigome
Toshiro Horigome
Yuki Tazawa
Yuki Tazawa
Akihiro Takamiya
Akihiro Takamiya
Jinichi Hirano
Masaru Mimura
Kuo-ching Liang
Kuo-ching Liang
Norihiro Koga
Yasushi Ochiai
Hiromi Ito
Yumiko Miyamae
Yuiko Tsujimoto
Kei Sakuma
Hisashi Kida
Hisashi Kida
Gentaro Miura
Yuko Kawade
Yuko Kawade
Akiko Goto
Akiko Goto
Fumihiro Yoshino
Fumihiro Yoshino
author_facet Taishiro Kishimoto
Taishiro Kishimoto
Shotaro Kinoshita
Shotaro Kinoshita
Toshiaki Kikuchi
Shogyoku Bun
Shogyoku Bun
Momoko Kitazawa
Toshiro Horigome
Toshiro Horigome
Yuki Tazawa
Yuki Tazawa
Akihiro Takamiya
Akihiro Takamiya
Jinichi Hirano
Masaru Mimura
Kuo-ching Liang
Kuo-ching Liang
Norihiro Koga
Yasushi Ochiai
Hiromi Ito
Yumiko Miyamae
Yuiko Tsujimoto
Kei Sakuma
Hisashi Kida
Hisashi Kida
Gentaro Miura
Yuko Kawade
Yuko Kawade
Akiko Goto
Akiko Goto
Fumihiro Yoshino
Fumihiro Yoshino
author_sort Taishiro Kishimoto
collection DOAJ
description IntroductionFew biomarkers can be used clinically to diagnose and assess the severity of depression. However, a decrease in activity and sleep efficiency can be observed in depressed patients, and recent technological developments have made it possible to measure these changes. In addition, physiological changes, such as heart rate variability, can be used to distinguish depressed patients from normal persons; these parameters can be used to improve diagnostic accuracy. The proposed research will explore and construct machine learning models capable of detecting depressive episodes and assessing their severity using data collected from wristband-type wearable devices.Methods and analysisPatients with depressive symptoms and healthy subjects will wear a wristband-type wearable device for 7 days; data on triaxial acceleration, pulse rate, skin temperature, and ultraviolet light will be collected. On the seventh day of wearing, the severity of depressive episodes will be assessed using Structured Clinical Interview for DSM-5 (SCID-5), Hamilton Depression Rating Scale (HAMD), and other scales. Data for up to five 7-day periods of device wearing will be collected from each subject. Using wearable device data associated with clinical symptoms as supervisory data, we will explore and build a machine learning model capable of identifying the presence or absence of depressive episodes and predicting the HAMD scores for an unknown data set.DiscussionOur machine learning model could improve the clinical diagnosis and management of depression through the use of a wearable medical device.Clinical trial registration[https://jrct.niph.go.jp/latest-detail/jRCT1031210478], identifier [jRCT1031210478].
first_indexed 2024-04-12T00:48:47Z
format Article
id doaj.art-f49aad8e9cf1448d8470e1c4dce93fc7
institution Directory Open Access Journal
issn 1664-0640
language English
last_indexed 2024-04-12T00:48:47Z
publishDate 2022-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Psychiatry
spelling doaj.art-f49aad8e9cf1448d8470e1c4dce93fc72022-12-22T03:54:48ZengFrontiers Media S.A.Frontiers in Psychiatry1664-06402022-12-011310.3389/fpsyt.2022.10255171025517Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocolTaishiro Kishimoto0Taishiro Kishimoto1Shotaro Kinoshita2Shotaro Kinoshita3Toshiaki Kikuchi4Shogyoku Bun5Shogyoku Bun6Momoko Kitazawa7Toshiro Horigome8Toshiro Horigome9Yuki Tazawa10Yuki Tazawa11Akihiro Takamiya12Akihiro Takamiya13Jinichi Hirano14Masaru Mimura15Kuo-ching Liang16Kuo-ching Liang17Norihiro Koga18Yasushi Ochiai19Hiromi Ito20Yumiko Miyamae21Yuiko Tsujimoto22Kei Sakuma23Hisashi Kida24Hisashi Kida25Gentaro Miura26Yuko Kawade27Yuko Kawade28Akiko Goto29Akiko Goto30Fumihiro Yoshino31Fumihiro Yoshino32Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japani2medical LLC, Kawasaki, JapanHills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, JapanGraduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanSato Hospital, Yamagata, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japani2medical LLC, Kawasaki, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japani2medical LLC, Kawasaki, JapanOffice for Open Innovation, Keio University, Tokyo, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanAkasaka Clinic, Tokyo, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japani2medical LLC, Kawasaki, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japani2medical LLC, Kawasaki, JapanFrontier Business Office, Sumitomo Pharma Co., Ltd., Tokyo, JapanFrontier Business Office, Sumitomo Pharma Co., Ltd., Tokyo, JapanFrontier Business Office, Sumitomo Pharma Co., Ltd., Tokyo, JapanFrontier Business Office, Sumitomo Pharma Co., Ltd., Tokyo, JapanAsaka Hospital, Koriyama, JapanDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, JapanAsaka Hospital, Koriyama, Japan0Oizumi Hospital, Tokyo, Japan1Department of Psychiatry, Tsurugaoka Garden Hospital, Tokyo, Japan2Nagatsuta Ikoinomori Clinic, Yokohama, Japan1Department of Psychiatry, Tsurugaoka Garden Hospital, Tokyo, Japan2Nagatsuta Ikoinomori Clinic, Yokohama, Japan1Department of Psychiatry, Tsurugaoka Garden Hospital, Tokyo, Japan2Nagatsuta Ikoinomori Clinic, Yokohama, JapanIntroductionFew biomarkers can be used clinically to diagnose and assess the severity of depression. However, a decrease in activity and sleep efficiency can be observed in depressed patients, and recent technological developments have made it possible to measure these changes. In addition, physiological changes, such as heart rate variability, can be used to distinguish depressed patients from normal persons; these parameters can be used to improve diagnostic accuracy. The proposed research will explore and construct machine learning models capable of detecting depressive episodes and assessing their severity using data collected from wristband-type wearable devices.Methods and analysisPatients with depressive symptoms and healthy subjects will wear a wristband-type wearable device for 7 days; data on triaxial acceleration, pulse rate, skin temperature, and ultraviolet light will be collected. On the seventh day of wearing, the severity of depressive episodes will be assessed using Structured Clinical Interview for DSM-5 (SCID-5), Hamilton Depression Rating Scale (HAMD), and other scales. Data for up to five 7-day periods of device wearing will be collected from each subject. Using wearable device data associated with clinical symptoms as supervisory data, we will explore and build a machine learning model capable of identifying the presence or absence of depressive episodes and predicting the HAMD scores for an unknown data set.DiscussionOur machine learning model could improve the clinical diagnosis and management of depression through the use of a wearable medical device.Clinical trial registration[https://jrct.niph.go.jp/latest-detail/jRCT1031210478], identifier [jRCT1031210478].https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1025517/fullmachine learningdepressionwearablespersonalized medicinedigital health
spellingShingle Taishiro Kishimoto
Taishiro Kishimoto
Shotaro Kinoshita
Shotaro Kinoshita
Toshiaki Kikuchi
Shogyoku Bun
Shogyoku Bun
Momoko Kitazawa
Toshiro Horigome
Toshiro Horigome
Yuki Tazawa
Yuki Tazawa
Akihiro Takamiya
Akihiro Takamiya
Jinichi Hirano
Masaru Mimura
Kuo-ching Liang
Kuo-ching Liang
Norihiro Koga
Yasushi Ochiai
Hiromi Ito
Yumiko Miyamae
Yuiko Tsujimoto
Kei Sakuma
Hisashi Kida
Hisashi Kida
Gentaro Miura
Yuko Kawade
Yuko Kawade
Akiko Goto
Akiko Goto
Fumihiro Yoshino
Fumihiro Yoshino
Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
Frontiers in Psychiatry
machine learning
depression
wearables
personalized medicine
digital health
title Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
title_full Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
title_fullStr Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
title_full_unstemmed Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
title_short Development of medical device software for the screening and assessment of depression severity using data collected from a wristband-type wearable device: SWIFT study protocol
title_sort development of medical device software for the screening and assessment of depression severity using data collected from a wristband type wearable device swift study protocol
topic machine learning
depression
wearables
personalized medicine
digital health
url https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1025517/full
work_keys_str_mv AT taishirokishimoto developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT taishirokishimoto developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT shotarokinoshita developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT shotarokinoshita developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT toshiakikikuchi developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT shogyokubun developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT shogyokubun developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT momokokitazawa developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT toshirohorigome developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT toshirohorigome developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yukitazawa developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yukitazawa developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT akihirotakamiya developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT akihirotakamiya developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT jinichihirano developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT masarumimura developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT kuochingliang developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT kuochingliang developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT norihirokoga developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yasushiochiai developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT hiromiito developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yumikomiyamae developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yuikotsujimoto developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT keisakuma developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT hisashikida developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT hisashikida developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT gentaromiura developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yukokawade developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT yukokawade developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT akikogoto developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT akikogoto developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT fumihiroyoshino developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol
AT fumihiroyoshino developmentofmedicaldevicesoftwareforthescreeningandassessmentofdepressionseverityusingdatacollectedfromawristbandtypewearabledeviceswiftstudyprotocol