An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>

In this paper, we consider the split quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>−</mo><mi>A</mi><mi>f</mi><m...

Full description

Bibliographic Details
Main Authors: Shufang Yue, Ying Li, Anli Wei, Jianli Zhao
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/6/1158
_version_ 1797482043719811072
author Shufang Yue
Ying Li
Anli Wei
Jianli Zhao
author_facet Shufang Yue
Ying Li
Anli Wei
Jianli Zhao
author_sort Shufang Yue
collection DOAJ
description In this paper, we consider the split quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>−</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mi>B</mi><mo>=</mo><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>X</mi><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mi mathvariant="normal">H</mi></msup><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">i</mi><mi mathvariant="normal">H</mi></mrow></msup><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">j</mi><mi mathvariant="normal">H</mi></mrow></msup><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">k</mi><mi mathvariant="normal">H</mi></mrow></msup><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> representation method has the characteristics of transforming a matrix with a special structure into a column vector with independent elements. By using the real representation of split quaternion matrices, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> representation method, the Kronecker product of matrices and the Moore-Penrose generalized inverse, we convert the split quaternion matrix equation into the real matrix equation, and derive the sufficient and necessary conditions and the general solution expressions for the (skew) bisymmetric solution of the original equation. Moreover, we provide numerical algorithms and illustrate the efficiency of our method by two numerical examples.
first_indexed 2024-03-09T22:22:42Z
format Article
id doaj.art-f49e14961f314c2c864ca2ebfe6b1653
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T22:22:42Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-f49e14961f314c2c864ca2ebfe6b16532023-11-23T19:11:45ZengMDPI AGSymmetry2073-89942022-06-01146115810.3390/sym14061158An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>Shufang Yue0Ying Li1Anli Wei2Jianli Zhao3Research Center of Semi-Tensor Product of Matrices: Theory and Applications, College of Mathematical Sciences, Liaocheng University, Liaocheng 252000, ChinaResearch Center of Semi-Tensor Product of Matrices: Theory and Applications, College of Mathematical Sciences, Liaocheng University, Liaocheng 252000, ChinaResearch Center of Semi-Tensor Product of Matrices: Theory and Applications, College of Mathematical Sciences, Liaocheng University, Liaocheng 252000, ChinaResearch Center of Semi-Tensor Product of Matrices: Theory and Applications, College of Mathematical Sciences, Liaocheng University, Liaocheng 252000, ChinaIn this paper, we consider the split quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>−</mo><mi>A</mi><mi>f</mi><mo>(</mo><mi>X</mi><mo>)</mo><mi>B</mi><mo>=</mo><mi>C</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mi>X</mi><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mi mathvariant="normal">H</mi></msup><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">i</mi><mi mathvariant="normal">H</mi></mrow></msup><mo>,</mo><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">j</mi><mi mathvariant="normal">H</mi></mrow></msup><mspace width="3.33333pt"></mspace><msup><mi>X</mi><mrow><mi mathvariant="bold">k</mi><mi mathvariant="normal">H</mi></mrow></msup><mo>}</mo></mrow></mrow></semantics></math></inline-formula>. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> representation method has the characteristics of transforming a matrix with a special structure into a column vector with independent elements. By using the real representation of split quaternion matrices, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> representation method, the Kronecker product of matrices and the Moore-Penrose generalized inverse, we convert the split quaternion matrix equation into the real matrix equation, and derive the sufficient and necessary conditions and the general solution expressions for the (skew) bisymmetric solution of the original equation. Moreover, we provide numerical algorithms and illustrate the efficiency of our method by two numerical examples.https://www.mdpi.com/2073-8994/14/6/1158split quaternion matrixreal representation matrixℋ representationbisymmetric matrixskew bisymmetric matrix
spellingShingle Shufang Yue
Ying Li
Anli Wei
Jianli Zhao
An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
Symmetry
split quaternion matrix
real representation matrix
ℋ representation
bisymmetric matrix
skew bisymmetric matrix
title An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
title_full An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
title_fullStr An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
title_full_unstemmed An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
title_short An Efficient Method for Split Quaternion Matrix Equation <i>X</i> − <i>Af</i>(<i>X</i>)<i>B</i> = <i>C</i>
title_sort efficient method for split quaternion matrix equation i x i i af i i x i i b i i c i
topic split quaternion matrix
real representation matrix
ℋ representation
bisymmetric matrix
skew bisymmetric matrix
url https://www.mdpi.com/2073-8994/14/6/1158
work_keys_str_mv AT shufangyue anefficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT yingli anefficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT anliwei anefficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT jianlizhao anefficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT shufangyue efficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT yingli efficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT anliwei efficientmethodforsplitquaternionmatrixequationixiiafiixiibiici
AT jianlizhao efficientmethodforsplitquaternionmatrixequationixiiafiixiibiici