The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations

A Riemannian almost paracomplex manifold is a 2<i>n</i>-dimensional Riemannian manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,&l...

Full description

Bibliographic Details
Main Authors: Vladimir Rovenski, Josef Mikeš, Sergey Stepanov
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/12/1379
_version_ 1827689822712496128
author Vladimir Rovenski
Josef Mikeš
Sergey Stepanov
author_facet Vladimir Rovenski
Josef Mikeš
Sergey Stepanov
author_sort Vladimir Rovenski
collection DOAJ
description A Riemannian almost paracomplex manifold is a 2<i>n</i>-dimensional Riemannian manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, whose structural group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is reduced to the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We define the scalar curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> of this manifold and consider relationships between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> and the scalar curvature <i>s</i> of the metric <i>g</i> and its conformal transformations.
first_indexed 2024-03-10T10:25:55Z
format Article
id doaj.art-f4b611ed00114b3893d76a55782f4f86
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T10:25:55Z
publishDate 2021-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f4b611ed00114b3893d76a55782f4f862023-11-22T00:04:10ZengMDPI AGMathematics2227-73902021-06-01912137910.3390/math9121379The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal TransformationsVladimir Rovenski0Josef Mikeš1Sergey Stepanov2Department of Mathematics, University of Haifa, Mount Carmel, Haifa 3498838, IsraelDepartment of Algebra and Geometry, Palacky University, 77146 Olomouc, Czech RepublicDepartment of Mathematics, Finance University, 49-55, Leningradsky Prospect, 125468 Moscow, RussiaA Riemannian almost paracomplex manifold is a 2<i>n</i>-dimensional Riemannian manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></semantics></math></inline-formula>, whose structural group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula> is reduced to the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo><mo>×</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi mathvariant="double-struck">R</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We define the scalar curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> of this manifold and consider relationships between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> and the scalar curvature <i>s</i> of the metric <i>g</i> and its conformal transformations.https://www.mdpi.com/2227-7390/9/12/1379almost paracomplex manifoldconformal transformationscalar curvature
spellingShingle Vladimir Rovenski
Josef Mikeš
Sergey Stepanov
The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
Mathematics
almost paracomplex manifold
conformal transformation
scalar curvature
title The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
title_full The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
title_fullStr The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
title_full_unstemmed The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
title_short The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
title_sort scalar curvature of a riemannian almost paracomplex manifold and its conformal transformations
topic almost paracomplex manifold
conformal transformation
scalar curvature
url https://www.mdpi.com/2227-7390/9/12/1379
work_keys_str_mv AT vladimirrovenski thescalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations
AT josefmikes thescalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations
AT sergeystepanov thescalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations
AT vladimirrovenski scalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations
AT josefmikes scalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations
AT sergeystepanov scalarcurvatureofariemannianalmostparacomplexmanifoldanditsconformaltransformations